Abstract

With specific fold patterns, a 2D flat origami can be converted into a complex 3D structure under an external driving force. Origami inspires the engineering design of many self-assembled and re-configurable devices. This work aims to apply the level set-based topology optimization to the generative design of origami structures. The origami mechanism is simulated using thin shell models where the deformation on the surface and the deformation in the normal direction can be simplified and well captured. Moreover, the fold pattern is implicitly represented by the boundaries of the level set function. The folding topology is optimized by minimizing a new multiobjective function that balances kinematic performance with structural stiffness and geometric requirements. Besides regular straight folds, our proposed model can mimic crease patterns with curved folds. With the folding curves implicitly represented, the curvature flow is utilized to control the complexity of the folds generated. The performance of the proposed method is demonstrated by the computer generation and physical validation of two thin shell origami designs.

References

1.
Turner
,
N.
,
Goodwine
,
B.
, and
Sen
,
M.
,
2016
, “
A Review of Origami Applications in Mechanical Engineering
,”
Proc. Inst. Mech. Eng., Part C
,
230
(
14
), pp.
2345
2362
.
2.
Overvelde
,
J. T.
,
De Jong
,
T. A.
,
Shevchenko
,
Y.
,
Becerra
,
S. A.
,
Whitesides
,
G. M.
,
Weaver
,
J. C.
,
Hoberman
,
C.
, and
Bertoldi
,
K.
,
2016
, “
A Three-Dimensional Actuated Origami-Inspired Transformable Metamaterial With Multiple Degrees of Freedom
,”
Nat. Commun.
,
7
(
1
), pp.
1
8
.
3.
Fuchi
,
K.
,
Diaz
,
A. R.
,
Rothwell
,
E. J.
,
Ouedraogo
,
R. O.
, and
Tang
,
J.
,
2012
, “
An Origami Tunable Metamaterial
,”
J. Appl. Phys.
,
111
(
8
), p.
084905
.
4.
Kamrava
,
S.
,
Mousanezhad
,
D.
,
Ebrahimi
,
H.
,
Ghosh
,
R.
, and
Vaziri
,
A.
,
2017
, “
Origami-Based Cellular Metamaterial With Auxetic, Bistable, and Self-Locking Properties
,”
Sci. Rep.
,
7
(
1
), pp.
1
9
.
5.
Morgan
,
J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
An Approach to Designing Origami-Adapted Aerospace Mechanisms
,”
ASME J. Mech. Des.
,
138
(
5
), p.
052301
.
6.
Ishida
,
S.
,
Nojima
,
T.
, and
Hagiwara
,
I.
,
2014
, “
Mathematical Approach to Model Foldable Conical Structures Using Conformal Mapping
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091007
.
7.
Hull
,
T.
,
1994
, “
On the Mathematics of Flat Origamis
,”
Congressus Numerantium
,
Boca Raton, FL
,
Mar. 7–11
, pp.
215
224
.
8.
Hull
,
T. C.
,
2002
, “
Modelling the Folding of Paper Into Three Dimensions Using Affine Transformations
,”
Linear Algebra Appl.
,
348
(
1–3
), pp.
273
282
.
9.
Lang
,
R. J.
,
1996
, “
A Computational Algorithm for Origami Design
,”
Proceedings of the Twelfth Annual Symposium on Computational Geometry
,
Philadelphia, PA
,
May 24–26
, ACM, pp.
98
105
.
10.
Tachi
,
T.
,
2010
, “
Geometric Considerations for the Design of Rigid Origami Structures
,”
Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium
,
Shanghai, China
,
Nov. 8–12
, Vol. 12, pp.
458
460
.
11.
Schenk
,
M.
, and
Guest
,
S. D.
,
2010
, “
Origami Folding: A Structural Engineering Approach
,”
Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education
,
Singapore
,
July 13–17
, CRC Press, Boca Raton, FL, pp.
291
304
.
12.
Tachi
,
T.
,
2009
, “Simulation of Rigid Origami,”
Origami 4
, Vol.
4
,
CRC Press
,
New York
, pp.
175
187
.
13.
Wei
,
Z. Y.
,
Guo
,
Z. V.
,
Dudte
,
L.
,
Liang
,
H. Y.
, and
Mahadevan
,
L.
,
2013
, “
Geometric Mechanics of Periodic Pleated Origami
,”
Phys. Rev. Lett.
,
110
(
21
), p.
215501
.
14.
Lang
,
R. J.
,
Tolman
,
K. A.
,
Crampton
,
E. B.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
A Review of Thicknessaccommodation Techniques in Origami-Inspired Engineering
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010805
.
15.
Peraza Hernandez
,
E. A.
,
Hartl
,
D. J.
, and
Lagoudas
,
D. C.
,
2016
, “
Kinematics of Origami Structures with Smooth Folds
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061019
.
16.
Hernandez
,
E. A. P.
,
Hartl
,
D. J.
, and
Lagoudas
,
D. C.
,
2019
,
Active Origami
,
Springer Cham
,
Switzerland
, pp.
201
268
.
17.
Liu
,
K.
, and
Paulino
,
G. H.
,
2016
, “
Merlin: A Matlab Implementation to Capture Highly Nonlinear Behavior of Nonrigid Origami
,”
Proceedings of IASS Annual Symposia
,
Tokyo, Japan
,
Sept. 26
, pp.
1
10
.
18.
Liu
,
K.
, and
Paulino
,
G.
,
2017
, “
Nonlinear Mechanics of non-Rigid Origami: An Efficient Computational Approach
,”
Proc. R. Soc. A
,
473
(
2206
), p.
20170348
.
19.
Filipov
,
E.
,
Liu
,
K.
,
Tachi
,
T.
,
Schenk
,
M.
, and
Paulino
,
G.
,
2017
, “
Bar and Hinge Models for Scalable Analysis of Origami
,”
Int. J. Solids Struct.
,
124
, pp.
26
45
.
20.
Ghassaei
,
A.
,
Demaine
,
E. D.
, and
Gershenfeld
,
N.
,
2018
, “
Fast, Interactive Origami Simulation Using gpu Computation
,”
7th International Meeting on Origami in Science, Mathematics and Education
,
Oxford, UK
,
Sept. 4–7
.
21.
Gilewski
,
W.
,
Pełczynski
,
J.
, and
Stawarz
,
P.
,
2014
, “
A Comparative Study of Origami Inspired Folded Plates
,”
Procedia Eng.
,
91
, pp.
220
225
.
22.
Cai
,
J.
,
Ren
,
Z.
,
Ding
,
Y.
,
Deng
,
X.
,
Xu
,
Y.
, and
Feng
,
J.
,
2017
, “
Deployment Simulation of Foldable Origami Membrane Structures
,”
Aerosp. Sci. Technol.
,
67
, pp.
343
353
.
23.
Dias
,
M. A.
,
Dudte
,
L. H.
,
Mahadevan
,
L.
, and
Santangelo
,
C. D.
,
2012
, “
Geometric Mechanics of Curved Crease Origami
,”
Phys. Rev. Lett.
,
109
(
11
), p.
114301
.
24.
Kilian
,
M.
,
Flory
,
S.
,
Chen
,
Z.
,
Mitra
,
N. J.
,
Sheffer
,
A.
, and
Pottmann
,
H.
,
2008
, “
Curved Folding
,”
ACM Trans. Graph.
,
27
(
3
), pp.
1
9
.
25.
Kilian
,
M.
,
Monszpart
,
A.
, and
Mitra
,
N. J.
,
2017
, “
String Actuated Curved Folded Surfaces
,”
ACM Trans. Graph.
,
36
(
3
), pp.
1
13
.
26.
Vergauwen
,
A.
,
De Laet
,
L.
, and
De Temmerman
,
N.
,
2017
, “
Computational Modelling Methods for Pliable Structures Based on Curved-Line Folding
,”
Comput. Aided Des.
,
83
(
C
), pp.
51
63
.
27.
Callens
,
S. J.
, and
Zadpoor
,
A. A.
,
2018
, “
From Flat Sheets to Curved Geometries: Origami and Kirigami Approaches
,”
Mater. Today
,
21
(
3
), pp.
241
264
.
28.
Bende
,
N. P.
,
Evans
,
A. A.
,
Innes-Gold
,
S.
,
Marin
,
L. A.
,
Cohen
,
I.
,
Hayward
,
R. C.
, and
Santangelo
,
C. D.
,
2015
, “
Geometrically Controlled Snapping Transitions in Shells With Curved Creases
,”
Proc. Natl. Acad. Sci. USA
,
112
(
36
), pp.
11175
11180
.
29.
Nelson
,
T. G.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
Curved-Folding-Inspired Deployable Compliant Rolling-Contact Element (d-Core)
,”
Mech. Mach. Theory
,
96
(
Part 2
), pp.
225
238
.
30.
Badger
,
J. C.
,
Nelson
,
T. G.
,
Lang
,
R. J.
,
Halverson
,
D. M.
, and
Howell
,
L. L.
,
2019
, “
Normalized Coordinate Equations and an Energy Method for Predicting Natural Curved-Fold Configurations
,”
ASME J. Appl. Mech.
,
86
(
7
), p.
071006
.
31.
Greenwood
,
J.
,
Avila
,
A.
,
Howell
,
L.
, and
Magleby
,
S.
,
2020
, “
Conceptualizing Stable States in Origami-Based Devices Using an Energy Visualization Approach
,”
ASME J. Mech. Des.
,
142
(
9
), p.
093302
.
32.
Avila
,
A.
,
Greenwood
,
J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2019
, “
Conceptualizing Stable States in Origami-Based Devices Using an Energy Visualization Approach
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
.
33.
Fuchi
,
K.
, and
Diaz
,
A. R.
,
2013
, “
Origami Design by Topology Optimization
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111003
.
34.
Fuchi
,
K.
,
Buskohl
,
P. R.
,
Bazzan
,
G.
,
Durstock
,
M. F.
,
Reich
,
G. W.
,
Vaia
,
R. A.
, and
Joo
,
J. J.
,
2015
, “
Origami Actuator Design and Networking Through Crease Topology Optimization
,”
ASME J. Mech. Des.
,
137
(
9
), p.
091401
.
35.
Fuchi
,
K.
,
Buskohl
,
P. R.
,
Bazzan
,
G.
,
Durstock
,
M. F.
,
Reich
,
G. W.
,
Vaia
,
R. A.
, and
Joo
,
J. J.
,
2016
, “
Design Optimization Challenges of Origami-Based Mechanisms With Sequenced Folding
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051011
.
36.
Gillman
,
A. S.
,
Fuchi
,
K.
, and
Buskohl
,
P. R.
,
2019
, “
Discovering Sequenced Origami Folding Through Nonlinear Mechanics and Topology Optimization
,”
ASME J. Mech. Des.
,
141
(
4
), p.
041401
.
37.
Yu
,
Y.
,
Hong
,
T.-C. K.
,
Economou
,
A.
, and
Paulino
,
G. H.
,
2021
, “
Rethinking Origami: A Generative Specification of Origami Patterns With Shape Grammars
,”
Comput. Aided Des.
,
137
, p.
103029
.
38.
Suzuki
,
K.
, and
Kikuchi
,
N.
,
1991
, “
A Homogenization Method for Shape and Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
93
(
3
), pp.
291
318
.
39.
Allaire
,
G.
, and
Kohn
,
R.
,
1993
, “Topology Optimization and Optimal Shape Design Using Homogenization,”
Topology Design of Structures
,
M.P.
Bendsøe
, and
C. A. M.
Soares
, eds.,
Springer
,
Dordrecht
, pp.
207
218
.
40.
Nishiwaki
,
S.
,
Frecker
,
M. I.
,
Min
,
S.
, and
Kikuchi
,
N.
,
1998
, “
Topology Optimization of Compliant Mechanisms Using the Homogenization Method
,”
Int. J. Numer. Methods Eng.
,
42
(
3
), pp.
535
559
.
41.
Rozvany
,
G. I.
,
Zhou
,
M.
, and
Birker
,
T.
,
1992
, “
Generalized Shape Optimization Without Homogenization
,”
Struct. Optim
,
4
(
3–4
), pp.
250
252
.
42.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2013
,
Topology Optimization: Theory, Methods, and Applications
,
Springer Science & Business Media
,
Germany
.
43.
van Dijk
,
N. P.
,
Maute
,
K.
,
Langelaar
,
M.
, and
Van Keulen
,
F.
,
2013
, “
Level-Set Methods for Structural Topology Optimization: A Review
,”
Struct. Multidiscipl. Optim.
,
48
(
3
), pp.
437
472
.
44.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
45.
Osher
,
S. J.
, and
Santosa
,
F.
,
2001
, “
Level Set Methods for Optimization Problems Involving Geometry and Constraints: I. Frequencies of a Two-Density Inhomogeneous Drum
,”
J. Comput. Phys.
,
171
(
1
), pp.
272
288
.
46.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2002
, “
A Level-Set Method for Shape Optimization
,”
Comptes Rendus Math.
,
334
(
12
), pp.
1125
1130
.
47.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
48.
Wang
,
M. Y.
, and
Wang
,
S.
,
2006
, “Parametric Shape and Topology Optimization With Radial Basis Functions,”
IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials
,
Springer
, pp.
13
22
.
49.
Bandi
,
P.
,
Detwiler
,
D.
,
Schmiedeler
,
J. P.
, and
Tovar
,
A.
,
2015
, “
Design of Progressively Folding Thin-Walled Tubular Components Using Compliant Mechanism Synthesis
,”
Thin-Walled Struct.
,
95
, pp.
208
220
.
50.
Zhu
,
J.
,
2013
,
The Finite Element Method: Its Basis and Fundamentals
,
Elsevier
,
New York
.
51.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
2005
,
The Finite Element Method for Solid and Structural Mechanics
,
Elsevier
,
New York
.
52.
Liu
,
G.-R.
, and
Quek
,
S. S.
,
2013
,
The Finite Element Method: A Practical Course
,
Elsevier Science
,
Netherlands
.
53.
Bathe
,
K.-J.
, and
Chapelle
,
D.
,
2003
,
Finite Element Analysis of Shells–Fundamentals
,
Springer-Verlag Telos
,
Germany
.
54.
Reddy
,
J. N.
,
2003
,
Mechanics of Laminated Composite Plates and Shells: Theory and Analysis
,
CRC Press
,
Boca Raton, FL
.
55.
Choi
,
K. K.
, and
Kim
,
N.-H.
,
2006
,
Structural Sensitivity Analysis and Optimization 1: Linear Systems
,
Springer Science & Business Media
,
New York
.
56.
Osher
,
S.
, and
Fedkiw
,
R.
,
2006
,
Level set Methods and Dynamic Implicit Surfaces
, Vol.
153
,
Springer Science & Business Media
,
New York
.
57.
Tian
,
J.
,
Li
,
M.
,
Han
,
Z.
,
Chen
,
Y.
,
Gu
,
X. D.
,
Ge
,
Q.
, and
Chen
,
S.
,
2022
, “
Conformal Topology Optimization of Multi-Material Ferromagnetic Soft Active Structures Using an Extended Level Set Method
,”
Comput. Methods Appl. Mech. Eng.
,
389
, p.
114394
.
58.
Ye
,
Q.
,
Guo
,
Y.
,
Chen
,
S.
,
Gu
,
X. D.
, and
Lei
,
N.
,
2018
, “
Topology Optimization of Conformal Structures Using Extended Level Set Methods and Conformal Geometry Theory
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Canada
,
Aug. 26–29
.
59.
Ye
,
Q.
,
Guo
,
Y.
,
Chen
,
S.
,
Lei
,
N.
, and
Gu
,
X. D.
,
2019
, “
Topology Optimization of Conformal Structures on Manifolds Using Extended Level Set Methods (x-lsm) and Conformal Geometry Theory
,”
Comput. Methods Appl. Mech. Eng.
,
344
, pp.
164
185
.
60.
Ye
,
Q.
,
Jiang
,
L.
,
Chen
,
S.
, and
Gu
,
X.
,
2018
, “
Generative Design of Multifunctional Conformal Structures Using Extended Level Set Methods (x-lsm) and Conformal Geometry Theory
,”
IUTAM Symposium on When Topology Optimization Meets Additive Manufacturing—Theory and Methods.
,
Dalian, China
,
Oct. 8–12
.
61.
Ye
,
Q.
,
Gu
,
X. D.
, and
Chen
,
S.
,
2020
, “
Generative Design of Origami-Inspired Mechanisms With a Variational Level Set Approach
,”
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Online, Virtual
,
Aug. 17–19
.
62.
Xu
,
X.
,
Chen
,
S.
,
Gu
,
X. D.
, and
Wang
,
M. Y.
,
2021
, “
Conformal Topology Optimization of Heat Conduction Problems on Manifolds Using an Extended Level Set Method (x-lsm)
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online
,
Aug. 17–19
.
63.
Ciarlet
,
P. G.
,
2005
, “
An Introduction to Differential Geometry With Applications to Elasticity
,”
J. Elast.
,
78
(
1–3
), pp.
1
215
.
64.
Chapelle
,
D.
, and
Bathe
,
K.-J.
,
2010
,
The Finite Element Analysis of Shells-Fundamentals
,
Springer Science & Business Media
,
Berlin/Heidelberg
.
65.
Papadopoulos
,
P.
, and
Taylor
,
R. L.
,
1990
, “
A Triangular Element Based on Reissner-Mindlin Plate Theory
,”
Int. J. Numer. Methods Eng.
,
30
(
5
), pp.
1029
1049
.
66.
Kim
,
N. H.
,
Choi
,
K. K.
,
Chen
,
J.-S.
, and
Botkin
,
M. E.
,
2002
, “
Meshfree Analysis and Design Sensitivity Analysis for Shell Structures
,”
Int. J. Numer. Methods Eng.
,
53
(
9
), pp.
2087
2116
.
You do not currently have access to this content.