Abstract

Sequential sampling methods have gained significant attention due to their ability to iteratively construct surrogate models by sequentially inserting new samples based on existing ones. However, efficiently and accurately creating surrogate models for high-dimensional, nonlinear, and multimodal problems is still a challenging task. This paper proposes a new sequential sampling method for surrogate modeling based on a hybrid metric, specifically making the following three contributions: (1) a hybrid metric is developed by integrating the leave-one-out cross-validation error, the local nonlinearity, and the relative size of Voronoi regions using the entropy weights, which well considers both the global exploration and local exploitation of existing samples; (2) a Pareto-TOPSIS strategy is proposed to first filter out unnecessary regions and then efficiently identify the sensitive region within the remaining regions, thereby improving the efficiency of sensitive region identification; and (3) a prediction-error-and-variance (PE&V) learning function is proposed based on the prediction error and variance of the intermediate surrogate models to identify the new sample to be inserted in the sensitive region, ultimately improving the efficiency of the sequential sampling process and the accuracy of the final surrogate model. The proposed sequential sampling method is compared with four state-of-the-art sequential sampling methods for creating Kriging surrogate models in seven numerical cases and one real-world engineering case of a cutterhead of a tunnel boring machine. The results show that compared with the other four methods, the proposed sequential sampling method can more quickly and robustly create an accurate surrogate model using a smaller number of samples.

References

1.
Fuhg
,
J. N.
,
Fau
,
A.
, and
Nackenhorst
,
U.
,
2021
, “
State-of-the-Art and Comparative Review of Adaptive Sampling Methods for Kriging
,”
Arch. Comput. Methods Eng.
,
28
(
4
), pp.
2689
2747
.
2.
Cheng
,
K.
,
Lu
,
Z.
,
Ling
,
C.
, and
Zhou
,
S.
,
2020
, “
Surrogate-Assisted Global Sensitivity Analysis: an Overview
,”
Struct. Multidiscipl. Optim.
,
61
(
3
), pp.
1187
1213
.
3.
Owen
,
A. B.
,
1992
, “
Orthogonal Arrays for Computer Experiments, Integration and Visualization
,”
Statistica Sin.
,
2
(
2
), pp.
439
452
.
4.
Viana
,
F. A. C.
,
2016
, “
A Tutorial on Latin Hypercube Design of Experiments
,”
Qual. Reliab. Eng. Int.
,
32
(
5
), pp.
1975
1985
.
5.
Xu
,
S.
,
Liu
,
H.
,
Wang
,
X.
, and
Jiang
,
X.
,
2014
, “
A Robust Error-Pursuing Sequential Sampling Approach for Global Metamodeling Based on Voronoi Diagram and Cross Validation
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071009
.
6.
Garud
,
S. S.
,
Karimi
,
I. A.
, and
Kraft
,
M.
,
2017
, “
Smart Sampling Algorithm for Surrogate Model Development
,”
Comput. Chem. Eng.
,
96
, pp.
103
114
.
7.
Jiang
,
P.
,
Zhang
,
Y.
,
Zhou
,
Q.
,
Shao
,
X.
,
Hu
,
J.
, and
Shu
,
L.
,
2018
, “
An Adaptive Sampling Strategy for Kriging Metamodel Based on Delaunay Triangulation and TOPSIS
,”
Appl. Intell.
,
48
(
6
), pp.
1644
1656
.
8.
Crombecq
,
K.
,
Gorissen
,
D.
,
Deschrijver
,
D.
, and
Dhaene
,
T.
,
2011
, “
A Novel Hybrid Sequential Design Strategy for Global Surrogate Modeling of Computer Experiments
,”
SIAM J. Sci. Comput.
,
33
(
4
), pp.
1948
1974
.
9.
Yao
,
W.
,
Chen
,
X.
, and
Luo
,
W.
,
2009
, “
A Gradient-Based Sequential Radial Basis Function Neural Network Modeling Method
,”
Neural Comput. Appl.
,
18
(
5
), pp.
477
484
.
10.
Jin
,
R.
,
Chen
,
W.
, and
Sudjianto
,
A.
,
2002
, “
On Sequential Sampling for Global Metamodeling in Engineering Design
,”
Proc. ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Canada
,
Sept. 29–Oct. 2
, pp.
539
548
.
11.
Liu
,
H.
,
Cai
,
J.
, and
Ong
,
Y.-S.
,
2017
, “
An Adaptive Sampling Approach for Kriging Metamodeling by Maximizing Expected Prediction Error
,”
Comput. Chem. Eng.
,
106
, pp.
171
182
.
12.
Aute
,
V.
,
Saleh
,
K.
,
Abdelaziz
,
O.
,
Azarm
,
S.
, and
Radermacher
,
R.
,
2013
, “
Cross-Validation Based Single Response Adaptive Design of Experiments for Kriging Metamodeling of Deterministic Computer Simulations
,”
Struct. Multidiscipl. Optim.
,
48
(
3
), pp.
581
605
.
13.
Liu
,
H.
,
Xu
,
S.
,
Wang
,
X.
,
Wu
,
J.
, and
Song
,
Y.
,
2015
, “
A Global Optimization Algorithm for Simulation-Based Problems via the Extended DIRECT Scheme
,”
Eng. Optim.
,
47
(
11
), pp.
1441
1458
.
14.
Mo
,
S.
,
Lu
,
D.
,
Shi
,
X.
,
Zhang
,
G.
,
Ye
,
M.
,
Wu
,
J.
, and
Wu
,
J.
,
2017
, “
A Taylor Expansion-Based Adaptive Design Strategy for Global Surrogate Modeling With Applications in Groundwater Modeling
,”
Water Resour. Res.
,
53
(
12
), pp.
10802
10823
.
15.
Jiang
,
C.
,
Wang
,
D.
,
Qiu
,
H.
,
Gao
,
L.
,
Chen
,
L.
, and
Yang
,
Z.
,
2019
, “
An Active Failure-Pursuing Kriging Modeling Method for Time-Dependent Reliability Analysis
,”
Mech. Syst. Signal Process.
,
129
, pp.
112
129
.
16.
Deschrijver
,
D.
,
Crombecq
,
K.
,
Nguyen
,
H. M.
, and
Dhaene
,
T.
,
2011
, “
Adaptive Sampling Algorithm for Macromodeling of Parameterized S-Parameter Responses
,”
IEEE Trans. Microwave Theory Tech.
,
59
(
1
), pp.
39
45
.
17.
Lovison
,
A.
, and
Rigoni
,
E.
,
2011
, “
Adaptive Sampling With a Lipschitz Criterion for Accurate Metamodeling
,”
Commun. Appl. Ind. Math.
,
1
(
2
), pp.
110
126
.
18.
van der Herten
,
J.
,
Couckuyt
,
I.
,
Deschrijver
,
D.
, and
Dhaene
,
T.
,
2015
, “
A Fuzzy Hybrid Sequential Design Strategy for Global Surrogate Modeling of High-Dimensional Computer Experiments
,”
SIAM J. Sci. Comput.
,
37
(
2
), pp.
A1020
A1039
.
19.
Eason
,
J.
, and
Cremaschi
,
S.
,
2014
, “
Adaptive Sequential Sampling for Surrogate Model Generation With Artificial Neural Networks
,”
Comput. Chem. Eng.
,
68
, pp.
220
232
.
20.
Pan
,
Q.-J.
,
Zhang
,
R.-F.
,
Ye
,
X.-Y.
, and
Li
,
Z.-W.
,
2021
, “
An Efficient Method Combining Polynomial-Chaos Kriging and Adaptive Radial-Based Importance Sampling for Reliability Analysis
,”
Comput. Geotech.
,
140
, p.
104434
.
21.
Liu
,
Y.
,
Li
,
K.
,
Wang
,
S.
,
Cui
,
P.
,
Song
,
X.
, and
Sun
,
W.
,
2021
, “
A Sequential Sampling Generation Method for Multi-Fidelity Model Based on Voronoi Region and Sample Density
,”
ASME J. Mech. Des.
,
143
(
12
), p.
121702
.
22.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
23.
Lam
,
C. Q.
,
2008
,
Sequential Adaptive Designs in Computer Experiments for Response Surface Model fit
,
The Ohio State University
,
Columbus, OH
.
24.
Liu
,
H.
,
Xu
,
S.
,
Ma
,
Y.
,
Chen
,
X.
, and
Wang
,
X.
,
2016
, “
An Adaptive Bayesian Sequential Sampling Approach for Global Metamodeling
,”
ASME J. Mech. Des.
,
138
(
1
), p.
011404
.
25.
Chen
,
C.
,
Ran
,
D.
,
Yang
,
Y.
,
Hou
,
H.
, and
Peng
,
C.
,
2023
, “
TOPSIS Based Multi-Fidelity Co-Kriging for Multiple Response Prediction of Structures With Uncertainties Through Real-Time Hybrid Simulation
,”
Eng. Struct.
,
280
, p.
115734
.
26.
Aurenhammer
,
F.
,
1991
, “
Voronoi Diagrams—A Survey of a Fundamental Geometric Data Structure
,”
ACM Comput. Surveys
,
23
(
3
), pp.
345
405
.
27.
Hu
,
W.
,
Yan
,
J.
,
Zhao
,
F.
,
Jiang
,
C.
,
Liu
,
H.
,
Cho
,
H.
, and
Lee
,
I.
,
2023
, “
Surrogate-Based Time-Dependent Reliability Analysis for a Digital Twin
,”
ASME J. Mech. Des.
,
145
(
9
), p.
091708
.
28.
He
,
Y.
,
Guo
,
H.
,
Jin
,
M.
, and
Ren
,
P.
,
2016
, “
A Linguistic Entropy Weight Method and Its Application in Linguistic Multi-Attribute Group Decision Making
,”
Nonlinear Dyn.
,
84
(
1
), pp.
399
404
.
29.
Li
,
Z.
,
Luo
,
Z.
,
Wang
,
Y.
,
Fan
,
G.
, and
Zhang
,
J.
,
2022
, “
Suitability Evaluation System for the Shallow Geothermal Energy Implementation in Region by Entropy Weight Method and TOPSIS Method
,”
Renew. Energy
,
184
, pp.
564
576
.
30.
Wang
,
Q.
,
Wu
,
C.
, and
Sun
,
Y.
,
2015
, “
Evaluating Corporate Social Responsibility of Airlines Using Entropy Weight and Grey Relation Analysis
,”
J. Air Transp. Manage.
,
42
, pp.
55
62
.
31.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evolut. Comput.
,
6
(
2
), pp.
182
197
.
32.
Lai
,
Y.-J.
,
Liu
,
T.-Y.
, and
Hwang
,
C.-L.
,
1994
, “
TOPSIS for MODM
,”
Eur. J. Operat. Res.
,
76
(
3
), pp.
486
500
.
33.
Peng
,
X.
,
Ye
,
T.
,
Hu
,
W.
,
Li
,
J.
,
Liu
,
Z.
, and
Jiang
,
S.
,
2022
, “
Construction of Adaptive Kriging Metamodel for Failure Probability Estimation Considering the Uncertainties of Distribution Parameters
,”
Probabilistic Eng. Mech.
,
70
, p.
103353
.
34.
Xiao
,
N.-C.
,
Zuo
,
M. J.
, and
Zhou
,
C.
,
2018
, “
A New Adaptive Sequential Sampling Method to Construct Surrogate Models for Efficient Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
169
, pp.
330
338
.
35.
Zhang
,
X.
,
Wang
,
L.
, and
Sørensen
,
J. D.
,
2020
, “
AKOIS: An Adaptive Kriging Oriented Importance Sampling Method for Structural System Reliability Analysis
,”
Struct. Saf.
,
82
, p.
101876
.
36.
Viana
,
F. A. C.
,
Venter
,
G.
, and
Balabanov
,
V.
,
2010
, “
An Algorithm for Fast Optimal Latin Hypercube Design of Experiments
,”
Int. J. Numer. Methods Eng.
,
82
(
2
), pp.
135
156
.
37.
Gramacy
,
R. B.
, and
Lee
,
H. K. H.
,
2012
, “
Cases for the Nugget in Modeling Computer Experiments
,”
Statistics Comput.
,
22
(
3
), pp.
713
722
.
38.
Solteiro Pires
,
E. J.
,
Tenreiro Machado
,
J. A.
,
de Moura Oliveira
,
P. B.
,
Boaventura Cunha
,
J.
, and
Mendes
,
L.
,
2010
, “
Particle Swarm Optimization With Fractional-Order Velocity
,”
Nonlinear Dyn.
,
61
(
1
), pp.
295
301
.
39.
Picheny
,
V.
,
Wagner
,
T.
, and
Ginsbourger
,
D.
,
2013
, “
A Benchmark of Kriging-Based Infill Criteria for Noisy Optimization
,”
Struct. Multidiscipl. Optim.
,
48
(
3
), pp.
607
626
.
40.
Zheng
,
Y. L.
,
Zhang
,
Q. B.
, and
Zhao
,
J.
,
2016
, “
Challenges and Opportunities of Using Tunnel Boring Machines in Mining
,”
Tunnell. Underground Space Technol.
,
57
, pp.
287
299
.
41.
Yu
,
H.
,
Tao
,
J.
,
Huang
,
S.
,
Qin
,
C.
,
Xiao
,
D.
, and
Liu
,
C.
,
2021
, “
A Field Parameters-Based Method for Real-Time Wear Estimation of Disc Cutter on TBM Cutterhead
,”
Autom. Constr.
,
124
, p.
103603
.
42.
Geng
,
Q.
,
Wei
,
Z.
,
Meng
,
H.
, and
Macias
,
F. J.
,
2016
, “
Mechanical Performance of TBM Cutterhead in Mixed Rock Ground Conditions
,”
Tunnell. Underground Space Technol.
,
57
, pp.
76
84
.
43.
Hu
,
W.
,
Choi
,
K. K.
, and
Cho
,
H.
,
2016
, “
Reliability-Based Design Optimization of Wind Turbine Blades for Fatigue Life Under Dynamic Wind Load Uncertainty
,”
Struct. Multidiscipl. Optim.
,
54
(
4
), pp.
953
970
.
44.
Chen
,
R.
,
Liu
,
Y.
,
Tang
,
L.
, and
Zhou
,
B.
,
2012
, “
Research on Calculation of Thrust and Cutter Head Torque on Shield in Complex Strata
,”
Chin. J. Underground Space Eng.
,
8
(
1
), pp.
26
32
.
You do not currently have access to this content.