Abstract

Owing to the advantages of monolithic structure and little need for assembling, compliant guiding mechanisms appear to be an effective solution for decoupling multi-freedom precision motions but are still prone to geometric nonlinearities of parasitic error and stiffening effect for large strokes. This paper proposes a coiled L-shape compliant guiding mechanism featuring millimeter-scale strokes with a compact structure, constant stiffness, and minimized parasitic error. The coiled compliant guiding mechanism is formed by convolving L-shape flexure beams in a zigzag configuration with decoupled XY motions achieved. Its geometrically nonlinear parasitic error, variation in stiffness, and primary vibration are captured by using a dynamic beam constraint model (DBCM). It is theoretically, numerically, and experimentally found, by comparing with double parallel guiding mechanisms, that the kinetostatic and dynamic behaviors of the coiled L-shape compliant mechanism are nearly independent on the applied force within intermediate-deformation ranges. Such a weak geometric nonlinearity with the minimized influence of axially loaded stiffening and kinematics-arching effects is much different from the double parallel guiding mechanisms. The obtained results indicate that large strokes with constant stiffness and invariable resonance frequency can be realized, which also allows small parasitic errors.

References

1.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
280
290
.
2.
Wang
,
X. J.
,
Liu
,
C. L.
,
Gu
,
J. J.
, and
Zhang
,
W. J.
,
2015
, “
A Parametric Model for Rotational Compliance of a Cracked Right Circular Flexure Hinge
,”
Int. J. Mech. Sci.
,
94–95
, pp.
168
173
.
3.
Qi
,
C. K.
,
Lin
,
J. F.
,
Liu
,
X.
,
Gao
,
F.
,
Yue
,
Y.
,
Hu
,
Y.
, and
Wei
,
B. C.
,
2023
, “
A Modeling Method for a 6-SPS Perpendicular Parallel Micro-Manipulation Robot Considering the Motion in Multiple Nonfunctional Directions and Nonlinear Hysteresis
,”
ASME J. Mech. Des.
,
145
(
5
), p.
053301
.
4.
Bakhtiari-Shahri
,
M.
, and
Moeenfard
,
H.
,
2018
, “
Topology Optimization of Fundamental Compliant Mechanisms Using a Novel Asymmetric Beam Flexure
,”
Int. J. Mech. Sci.
,
135
, pp.
383
397
.
5.
Lian
,
J. K.
,
An
,
D. W.
,
Chen
,
M. Y.
,
Huang
,
W. Q.
, and
Liang
,
Z. W.
,
2023
, “
Design and Feedforward Control of a Two-Degree-of-Freedom Positioning Stage With Bidirectional Piezoelectric Drive
,”
Precis. Eng.
,
81
, pp.
158
166
.
6.
Lin
,
J. W.
,
Zhao
,
Y.
,
Wu
,
Q. W.
,
Han
,
H. S. A. Q. E.
,
Yu
,
P.
, and
Zhang
,
Y.
,
2023
, “
Design and Analysis of a Triangular Bi-Axial Flexure Hinge
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci
,
237
(
21
), pp. 2131–2141.
7.
Guo
,
F. Y.
,
Sun
,
Z. L.
,
Zhang
,
S. N.
,
Cao
,
R. N.
, and
Li
,
H. Y.
,
2023
, “
Dynamic Characteristics and Frequency Reliability Analysis of an Optimized Compliant Stroke Amplification Mechanism
,”
ASME J. Mech. Rob.
,
15
(
6
), p.
061007
.
8.
Pankaj
,
Chandra
,
V.
,
Murat
,
R.
, and
Kumar
,
V.
,
2023
, “
Design and Analysis of Piezo Actuated Flexure Guided Nanopositioning Stage
,”
Mater. Today: Proc.
,
80
, pp.
327
332
.
9.
Qin
,
Y. D.
,
Shi
,
Y. Y.
,
Shirinzadeh
,
B.
,
Tian
,
Y. L.
, and
Zhang
,
D. W.
,
2023
, “
Characteristics of Statically Indeterminate Symmetric Flexure Structures
,”
Nanomanuf. Metrol.
,
6
(
1
), p.
1
.
10.
Lyu
,
Z.
, and
Xu
,
Q.
,
2022
, “
Design of a New Bio-Inspired Dual-Axis Compliant Micromanipulator With Millimeter Strokes
,”
IEEE Trans. Rob.
,
39
(
1
), pp.
470
484
.
11.
Lyu
,
Z.
,
Xu
,
Q.
, and
Zhu
,
L.
,
2023
, “
Design of a Compliant Vertical Micropositioning Stage Based on Lamina Emergent Mechanisms
,”
IEEE/ASME Trans. Mechatron.
12.
Vargas-Chable
,
P.
,
Tecpoyotl-Torres
,
M.
,
Vera-Dimas
,
G.
,
Grimalsky
,
V.
, and
Mireles García
,
J.
,
2022
, “
Novel Electrothermal Microgrippers Based on a Rotary Actuator System
,”
Micromachines
,
13
(
12
), p.
2189
.
13.
Guo
,
Z. Y.
,
Zhang
,
W. C.
,
Tian
,
Y. L.
,
Zhang
,
Z. Q.
,
Cao
,
Y. R.
,
Lu
,
X. C.
, and
Zhang
,
T. G.
,
2022
, “
Design, Modeling, and Testing of a one Degree of Freedom Manipulator With Three-Stage Amplification Mechanism
,”
Rev. Sci. Instrum.
,
93
(
12
), p.
123705
.
14.
Huang
,
W. Q.
,
Lei
,
Y. F.
,
An
,
D. W.
,
Su
,
Y. C.
, and
Liang
,
Z. W.
,
2023
, “
Design and Analysis of a Novel 2-DOF Rotation–Translation Precision Positioning Stage
,”
Mathematics
,
11
(
2
), p.
280
.
15.
Ye
,
T. T.
, and
Li
,
Y. M.
,
2023
, “
Synthesis of 2-DOF Decoupled Rotation Stage With FEA-Based Neural Network
,”
Processes
,
11
(
1
), p.
192
.
16.
Hao
,
G. B.
,
2013
, “
Towards the Design of Monolithic Decoupled XYZ Compliant Parallel Mechanisms for Multi-Function Applications
,”
Mech. Sci.
,
4
(
2
), pp.
291
302
.
17.
Luo
,
Y. Q.
,
Liu
,
W. Y.
, and
Wu
,
L.
,
2015
, “
Analysis of the Displacement of Lumped Compliant Parallel-Guiding Mechanism Considering Parasitic Rotation and Deflection on the Guiding Plate and Rigid Beams
,”
Mech. Mach. Theory
,
91
, pp.
50
68
.
18.
Xie
,
Y. L.
,
Li
,
Y. M.
,
Cheung
,
C. F.
,
Xiao
,
X.
,
Chen
,
X. G.
, and
Wang
,
R. B.
,
2023
, “
Investigation of a Compliant Precision Positioning Stage With Folding Function
,”
Int. J. Adv. Manuf. Technol.
,
124
(
10
), pp.
3343
3358
.
19.
Wei
,
F. L.
,
Wang
,
X. L.
,
Dong
,
J. S.
,
Guo
,
K.
, and
Sui
,
Y. X.
,
2023
, “
Development of a Three-Degree-of-Freedom Piezoelectric Actuator
,”
Rev. Sci. Instrum.
,
94
(
2
), p.
025001
.
20.
Ji
,
H. W.
,
Lv
,
B.
,
Li
,
T. Y.
,
Yang
,
F.
,
Qi
,
A. Q.
,
Wu
,
X.
, and
Ni
,
J.
,
2022
, “
Design of 2-DOF Decoupled Large Stroke Precision Positioning Platform
,”
J. Mech. Sci. Technol.
,
36
(
12
), pp.
5871
5884
.
21.
Xu
,
Q. S.
,
2011
, “
New Flexure Parallel-Kinematic Micro Positioning System With Large Workspace
,”
IEEE Trans. Rob.
,
28
(
2
), pp.
478
491
.
22.
Qin
,
Y. D.
,
Shirinzadeh
,
B.
,
Tian
,
Y. L.
, and
Zhang
,
D. W.
,
2013
, “
Design Issues in a Decoupled XY Stage: Static and Dynamics Modeling, Hysteresis Compensation, and Tracking Control
,”
Sens. Actuators, A
,
194
, pp.
95
105
.
23.
Kim
,
J. J.
,
Choi
,
Y. M.
,
Ahn
,
D.
,
Hwang
,
B.
,
Gweon
,
D. G.
, and
Jeong
,
J.
,
2012
, “
A Millimeter-Range Flexure-Based Nano-Positioning Stage Using a Self-Guided Displacement Amplification Mechanism
,”
Mech. Mach. Theory
,
50
, pp.
109
120
.
24.
Lobontiu
,
N.
,
Wight-Crask
,
J.
, and
Kawagley
,
C.
,
2019
, “
Straight-Axis Folded Flexure Hinges: In-Plane Elastic Response
,”
Precis. Eng.
,
57
, pp.
54
63
.
25.
Ling
,
M. X.
,
Yuan
,
L.
, and
Zhang
,
X. M.
,
2023
, “
Static and Dynamic Compliance Analyses of Curved-Axis Flexure Hinges: A Discrete Beam Transfer Matrix
,”
ASME J. Mech. Des.
,
145
(
6
), p.
064501
.
26.
Tian
,
Y. L.
,
Ma
,
Y.
,
Wang
,
F. J.
,
Lu
,
K. K.
, and
Zhang
,
D. W.
,
2020
, “
A Novel XYZ Micro/Nano Positioner With an Amplifier Based on L-Shape Levers and Half-Bridge Structure
,”
Sens. Actuators, A
,
302
, p.
111777
.
27.
Jia
,
Y. J.
,
Tang
,
H.
,
Xu
,
S. F.
,
Xu
,
Y.
,
Chen
,
X.
, and
Tian
,
Y. L.
,
2021
, “
A Novel Decoupled Flexure Nanopositioner With Thermal Distortion Self-Elimination Function
,”
IEEE/ASME Trans. Mechatron.
,
27
(
5
), pp.
2953
2962
.
28.
Kim
,
H. Y.
,
Ahn
,
D. H.
, and
Gweon
,
D. G.
,
2012
, “
Development of a Novel 3-Degrees of Freedom Flexure Based Positioning System
,”
Rev. Sci. Instrum.
,
83
(
5
), p.
055114
.
29.
Ling
,
M. X.
,
Howell
,
L. L.
,
Cao
,
J. Y.
, and
Chen
,
G. M.
,
2020
, “
Kinetostatic and Dynamic Modeling of Flexure-Based Compliant Mechanisms: A Survey
,”
ASME Appl. Mech. Rev.
,
72
(
3
), p.
030802
.
30.
Boyle
,
C.
,
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Evans
,
M. S.
,
2003
, “
Dynamic Modeling of Compliant Constant-Force Compression Mechanisms
,”
Mech. Mach. Theory
,
38
(
12
), pp.
1469
1487
.
31.
Ren
,
J.
, and
Wu
,
H. H.
,
2023
, “
Kinematic Modeling of a Novel 3-PSS/S Flexible Parallel Micro-Turntable: Accuracy Comparison Between Pseudo-Rigid-Body Model-Based and Compliance Matrix Method-Based Models
,”
Iran. J. Sci. Technol., Trans. Mech. Eng.
,
47
(
4),
pp.
2071
2088
.
32.
Pon
,
A.
,
Subramanian
,
K.
,
Gopal
,
P.
, and
Palanikumar
,
K.
,
2023
, “
Optimal Shape Selection of Pseudo-Rigid-Body Model Compliant Centrifugal Clutch Manufactured by Thermoplastics Using TOPSIS Approach
,”
J. Thermoplast. Compos. Mater.
,
36
(
11
), pp.
4430
4456
.
33.
Li
,
C. L.
, and
Chen
,
S. C.
,
2023
, “
Design of Compliant Mechanisms Based on Compliant Building Elements. Part I: Principles
,”
Precis. Eng.
,
81
, pp.
207
220
.
34.
Henning
,
S.
,
Linß
,
S.
,
Gräser
,
P.
,
Theska
,
R.
, and
Zentner
,
L.
,
2021
, “
Non-Linear Analytical Modeling of Planar Compliant Mechanisms
,”
Mech. Mach. Theory
,
155
, p.
104067
.
35.
Cammarata
,
A.
,
Maddio
,
P. D.
,
Sinatra
,
R.
, and
Belfiore
,
N. P.
,
2022
, “
Direct Kinetostatic Analysis of a Gripper With Curved Flexures
,”
Micromachines (Basel)
,
13
(
12
), p.
2172
.
36.
Sen
,
S.
, and
Awtar
,
S.
,
2013
, “
A Closed-Form Nonlinear Model for the Constraint Characteristics of Symmetric Spatial Beams
,”
ASME J. Mech. Des.
,
135
(
3
), p.
031003
.
37.
Bai
,
R.
,
Awtar
,
S.
, and
Chen
,
G.
,
2019
, “
A Closed-Form Model for Nonlinear Spatial Deflections of Rectangular Beams in Intermediate Range
,”
Int. J. Mech. Sci.
,
160
, pp.
229
240
.
38.
Chen
,
G. M.
, and
Ma
,
F. L.
,
2015
, “
Kinetostatic Modeling of Fully Compliant Bistable Mechanisms Using Timoshenko Beam Constraint Model
,”
ASME J. Mech. Des.
,
137
(
2
), p.
022301
.
39.
Kahrobaiyan
,
M. H.
,
Zanaty
,
M.
, and
Henein
,
S.
,
2017
, “
An Analytical Model for Beam Flexure Modules Based on the Timoshenko Beam Theory
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, p.
V05AT08A010
.
40.
Ma
,
F. L.
, and
Chen
,
G. M.
,
2016
, “
Modeling Large Planar Deflections of Flexible Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021018
.
41.
Radgolchin
,
M.
, and
Moeenfard
,
H.
,
2017
, “
A Constraint Model for Beam Flexure Modules With an Intermediate Semi-Rigid Element
,”
Int. J. Mech. Sci.
,
122
, pp.
167
183
.
42.
Chen
,
S.
,
Wan
,
H.
,
Jiang
,
C.
,
Ye
,
L.
,
Yu
,
H.
,
Yang
,
M.
,
Zhang
,
C.
,
Yang
,
G.
, and
Wu
,
J.
,
2021
, “
Kinetostatic Modeling of Dual-Drive H-Type Gantry With Exchangeable Flexure Joints
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
040909
.
43.
Xie
,
Z. T.
,
Qiu
,
L. F.
, and
Yang
,
D. B.
,
2020
, “
Analysis of a Novel Variable Stiffness Filleted Leaf Hinge
,”
Mech. Mach. Theory
,
144
, p.
103673
.
44.
Li
,
R. Q.
,
Yang
,
Z. J.
,
Chen
,
G. M.
, and
Wu
,
B. S.
,
2021
, “
Analytical Solutions for Nonlinear Deflections of Corner-Fillet Leaf-Springs
,”
Mech. Mach. Theory
,
157
, p.
104182
.
45.
Bi
,
S. S.
,
Zhao
,
H. Z.
, and
Yu
,
J. J.
,
2009
, “
Modeling of a Cartwheel Flexural Pivot
,”
ASME J. Mech. Des.
,
131
(
6
): p.
061010
.
46.
Bilancia
,
P.
,
Baggetta
,
M.
,
Hao
,
G.
, and
Berselli
,
G.
,
2021
, “
A Variable Section Beams Based Bi-BCM Formulation for the Kinetostatic Analysis of Parasitic Flexural Pivots
,”
Int. J. Mech. Sci.
,
205
, p.
106587
.
47.
Zhao
,
H. Z.
,
Bi
,
S. S.
, and
Yu
,
J. J.
,
2011
, “
Nonlinear Deformation Behavior of a Beam-Based Flexural Pivot With Monolithic Arrangement
,”
Precis. Eng.
,
35
(
2
), pp.
369
382
.
48.
Li
,
S. Y.
,
Hao
,
G. B.
,
Chen
,
Y. Y.
,
Zhu
,
J. X.
, and
Berselli
,
G.
,
2022
, “
Nonlinear Analysis of a Class of Inversion-Based Compliant Cross-Spring Pivots
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031007
.
49.
Lu
,
S. S.
, and
Yan
,
P.
,
2017
, “
A Stiffness Modeling Approach for Multi-Leaf Spring Mechanism Supporting Coupling Error Analysis of Nano-Stages
,”
Int. J. Precis. Eng. Manuf.
,
18
(
6
), pp.
863
870
.
50.
Hao
,
G. B.
, and
Li
,
H. Y.
,
2016
, “
Extended Static Modeling and Analysis of Compliant Compound Parallelogram Mechanisms Considering the Initial Internal Axial Force
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041008
.
51.
Radgolchin
,
M.
, and
Moeenfard
,
H.
,
2018
, “
Load-displacement Behavior of Fundamental Flexure Modules Interconnected With Compliant Elements
,”
Mech. Mach. Theory
,
120
, pp.
120
139
.
52.
Tanksale
,
A. A.
, and
Gandhi
,
P. S.
,
2018
, “
Large Deformation Analysis and Experiments With Double Parallelogram Compliant Mechanisms
,”
Proc. ASME International Mechanical Engineering Congress and Exposition
,
Pittsburgh, PA
,
Nov. 9–15
,
American Society of Mechanical Engineers
, p.
V04AT06A024
.
53.
Li
,
Y. Z.
,
Zhu
,
X. F.
,
Bi
,
S. S.
,
Guo
,
R. H.
,
Sun
,
J. H.
, and
Hu
,
W. C.
,
2020
, “
Design and Development of Compliant Mechanisms for Electromagnetic Force Balance Sensor
,”
Precis. Eng.
,
64
, pp.
157
164
.
54.
Pan
,
B.
,
Zhao
,
H. Z.
,
Zhao
,
C. X.
,
Zhang
,
P. Z.
, and
Hu
,
H. J.
,
2019
, “
Nonlinear Characteristics of Compliant Bridge-Type Displacement Amplification Mechanisms
,”
Precis. Eng.
,
60
, pp.
246
256
.
55.
Liu
,
P. B.
, and
Yan
,
P.
,
2018
, “
Kinetostatic Modeling of Bridge-Type Amplifiers Based on Timoshenko Beam Constraint Model
,”
Int. J. Precis. Eng. Manuf.
,
19
(
9
), pp.
1339
1345
.
56.
Li
,
Y. Z.
,
Bi
,
S. S.
, and
Zhao
,
C. X.
,
2019
, “
Analytical Modeling and Analysis of Rhombus-Type Amplifier Based on Beam Flexures
,”
Mech. Mach. Theory
,
139
, pp.
195
211
.
57.
Niu
,
M. Q.
,
Yang
,
B. T.
,
Yang
,
Y. K.
, and
Meng
,
G.
,
2018
, “
Two Generalized Models for Planar Compliant Mechanisms Based on Tree Structure Method
,”
Precis. Eng.
,
51
, pp.
137
144
.
58.
Ngo
,
T. H.
,
Tran
,
H. V.
,
Nguyen
,
T. A.
,
Dao
,
T. P.
, and
Wang
,
D. A.
,
2018
, “
Design and Kinetostatic Modeling of a Compliant Gripper for Grasp and Autonomous Release of Objects
,”
Advanced Robotics
,
32
(
14
), pp.
717
735
.
59.
Van Tran
,
H.
,
Ngo
,
T. H.
,
Tran
,
N. D. K.
,
Dang
,
T. N.
,
Dao
,
T. P.
, and
Wang
,
D. A.
,
2018
, “
A Threshold Accelerometer Based on a Tristable Mechanism
,”
Mechatronics
,
53
, pp.
39
55
.
60.
Xie
,
Y.
,
Pan
,
B.
,
Pei
,
X.
, and
Yu
,
J. J.
,
2016
, “
Design of Compliant Universal Joint With Linear Stiffness
,”
Proc. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
,
American Society of Mechanical Engineers
, p.
V05AT07A004
.
61.
Truong
,
Q. D.
, and
Wang
,
D. A.
,
2017
, “
Design and Characterization of a Mouse Trap Based on a Bistable Mechanism
,”
Sens. Actuators, A
,
267
, pp.
360
375
.
62.
Ngo
,
T.
,
Tran
,
N.
,
Le
,
H.
,
Nguyen
,
V.
, and
Phan
,
V.
,
2021
, “
Design and Analysis the Compliant Inner Tristable Mechanism With Chain Beam Constraint Method
,”
Proc. AIP Conference Proceedings
,
Ho Chi Minh City, Vietnam
,
June 27
,
AIP Publishing LLC
, p.
060002
.
63.
Chi
,
I. T.
,
Chang
,
P. L.
,
Tran
,
N. D. K.
, and
Wang
,
D. A.
,
2021
, “
Kinetostatic Modeling of Planar Compliant Mechanisms With Flexible Beams, Linear Sliders, Multinary Rigid Links, and Multiple Loops
,”
ASME J. Mech. Rob.
,
13
(
5
), p.
051002
.
64.
Ling
,
M. X.
,
Yuan
,
L.
, and
Zhang
,
X. M.
,
2023
, “
Geometrically Nonlinear Analysis of Compliant Mechanisms Using a Dynamic Beam Constraint Model (DBCM)
,”
Mech. Mach. Theory
,
191
, p.
105489
.
You do not currently have access to this content.