Abstract

As spinal fusion surgery continues to transition to less invasive techniques, there remains an unmet need for ever smaller and more complex interbody cages to meet the unique needs of this difficult surgery. This work focuses on the hypothesis that this need can be met using the inherent advantages of compliant mechanisms. Deployable Euler spiral connectors (DESCs), optimized using a gradient based optimization algorithm, were used as the foundation for a device that can stow to a very small size for device insertion then bilaterally deploy to a substantially larger device footprint. Additionally, a continuously adjustable lordotic angle was achieved using the same device so as to result in a customized anatomical fit. Several tests, including finite element analysis (FEA), compression testing, shear testing, and deployment in a cadaver, were performed as initial verification and validation that the concept device performs well under typical testing paradigms used for interbody cages. While further device testing and refinements are necessary prior to clinical use, the present work demonstrates the promise of this approach and highlights the potential of compliant mechanism devices for advancing minimally invasive (MIS) lumbar fusion.

References

1.
Hoy
,
D.
,
March
,
L.
,
Brooks
,
P.
,
Blyth
,
F.
,
Woolf
,
A.
,
Bain
,
C.
,
Williams
,
G.
, et al.,
2014
, “
The Global Burden of Low Back Pain: Estimates From the Global Burden of Disease 2010 Study
,”
Ann. Rheum. Dis.
,
73
(
6
), pp.
968
974
.10.1136/annrheumdis-2013-204428
2.
Vos
,
T.
,
Allen
,
C.
,
Arora
,
M.
,
Barber
,
R. M.
,
Bhutta
,
Z. A.
,
Brown
,
A.
,
Carter
,
A.
, et al.,
2016
, “
Global, Regional, and National Incidence, Prevalence, and Years Lived With Disability for 310 Diseases and Injuries, 1990–2015: A Systematic Analysis for the Global Burden of Disease Study 2015
,”
Lancet
,
388
(
10053
), pp.
1545
1602
.10.1016/S0140-6736(16)31678-6
3.
Hurwitz
,
E. L.
,
Randhawa
,
K.
,
Yu
,
H.
,
Côté
,
P.
, and
Haldeman
,
S.
,
2018
, “
The Global Spine Care Initiative: A Summary of the Global Burden of Low Back and Neck Pain Studies
,”
Eur. Spine J.
,
27
(
S6
), pp.
796
801
.10.1007/s00586-017-5432-9
4.
Wu
,
A.
,
March
,
L.
,
Zheng
,
X.
,
Huang
,
J.
,
Wang
,
X.
,
Zhao
,
J.
,
Blyth
,
F. M.
,
Smith
,
E.
,
Buchbinder
,
R.
, and
Hoy
,
D.
,
2020
, “
Global Low Back Pain Prevalence and Years Lived With Disability From 1990 to 2017: Estimates From the Global Burden of Disease Study 2017
,”
Ann. Transl. Med.
,
8
(
6
), pp.
299
299
.10.21037/atm.2020.02.175
5.
Koes
,
B. W.
,
Van Tulder
,
M.
, and
Thomas
,
S.
,
2006
, “
Diagnosis and Treatment of Low Back Pain
,”
Br. Med. J.
,
332
(
7555
), pp.
1430
1434
.10.1136/bmj.332.7555.1430
6.
Petersen
,
T.
,
Juhl
,
C. B.
, and
Fournier
,
G. L.
,
2020
, “
Patients With Persistent Low Back Pain and Nerve Root Involvement: To Operate, or Not to Operate, That is the Question
,”
Spine
,
45
(
7
), pp.
483
490
.10.1097/BRS.0000000000003304
7.
Zhao
,
L.
,
Manchikanti
,
L.
,
Kaye
,
A. D.
, and
Abd-Elsayed
,
A.
,
2019
, “
Treatment of Discogenic Low Back Pain: Current Treatment Strategies and Future Options—A Literature Review
,”
Curr. Pain Headache Rep.
,
23
(
11
), pp.
1
9
.10.1007/s11916-019-0821-x
8.
McDermott
,
K. W.
, and
Liang
,
L.
,
2021
, “
Overview of Operating Room Procedures During Inpatient Stays in U.S. Hospitals, 2018
,” HCUP Statistical Brief #281.: Agency for Healthcare Research and Quality (US), Rockville (MD).
9.
Wilson
,
R. J.
, and
Holt
,
G. E.
,
2022
, “
Surgical Interventions for Pain
,”
Hospitalized Chronic Pain Patient: A Multidisciplinary Treatment Guide
,
D. A.
Edwards
,
P.
Gulur
, and
C. M.
Sobey
, eds.,
Springer International Publishing
,
Cham
, pp.
219
225
.
10.
Cervellini
,
P.
,
Alvaro
,
L.
,
Beggio
,
G.
, and
Rossetto
,
L.
,
2018
, “
New Techniques and MIS: The Minimally Invasive TLIF
,”
Modern Thoraco-Lumbar Implants for Spinal Fusion
,
R.
Delfini
,
A.
Landi
,
C.
Mancarella
, and
F.
Gregori
, eds.,
Springer International Publishing
,
Cham
, pp.
93
99
.
11.
Sayari
,
A. J.
,
Patel
,
D. V.
,
Yoo
,
J. S.
, and
Singh
,
K.
,
2019
, “
Device Solutions for a Challenging Spine Surgery: Minimally Invasive Transforaminal Lumbar Interbody Fusion (MIS TLIF)
,”
Expert Rev. Med. Devices
,
16
(
4
), pp.
299
305
.10.1080/17434440.2019.1601013
12.
Lewandrowski
,
K.-U.
,
Ferrara
,
L.
, and
Cheng
,
B.
,
2020
, “
Expandable Interbody Fusion Cages: An Editorial on the Surgeon's Perspective on Recent Technological Advances and Their Biomechanical Implications
,”
Int. J. Spine Surg.
,
14
(
s3
), pp.
S56
S62
.10.14444/7127
13.
Vaishnav
,
A. S.
,
Saville
,
P.
,
McAnany
,
S.
,
Kirnaz
,
S.
,
Wipplinger
,
C.
,
Navarro-Ramirez
,
R.
,
Hartl
,
R.
,
Yang
,
J.
,
Gang
,
C. H.
, and
Qureshi
,
S. A.
,
2020
, “
Retrospective Review of Immediate Restoration of Lordosis in Single-Level Minimally Invasive Transforaminal Lumbar Interbody Fusion: A Comparison of Static and Expandable Interbody Cages
,”
Oper. Neurosurg.
,
18
(
5
), pp.
518
523
.10.1093/ons/opz240
14.
Armocida
,
D.
,
Pesce
,
A.
,
Cimatti
,
M.
,
Proietti
,
L.
,
Santoro
,
A.
, and
Frati
,
A.
,
2021
, “
Minimally Invasive Transforaminal Lumbar Interbody Fusion Using Expandable Cages: Increased Risk of Late Postoperative Subsidence Without a Real Improvement of Perioperative Outcomes: A Clinical Monocentric Study
,”
World Neurosurg.
,
156
, pp.
e57
e63
.10.1016/j.wneu.2021.08.127
15.
Holy
,
C. E.
,
Corso
,
K. A.
,
Bowden
,
D. E.
,
Erb
,
M. J.
,
Ruppenkamp
,
J. R.
,
Coombs
,
S.
, and
Pracyk
,
J. B.
,
2021
, “
Evaluation of Cost, Payments, Healthcare Utilization, and Perioperative and Post-Operative Outcomes of Patients Treated With Posterior Lumbar Spinal Surgery Using Open Versus Minimally Invasive Surgical Approaches
,”
Med. Devices: Evidence Res.
,
14
, pp.
173
183
.10.2147/MDER.S311774
16.
Emstad
,
E.
,
Cardenas Del Monaco
,
D.
,
Fielding
,
L. C.
, and
Block
,
J. E.
,
2015
, “
The variLift® Interbody Fusion System: Expandable, Standalone Interbody Fusion
,”
Med. Devices: Evidence Res.
,
8
, pp.
219
230
.10.2147/MDER.S84715
17.
Kim
,
J. W.
,
Park
,
H. C.
,
Yoon
,
S. H.
,
Oh
,
S. H.
,
Roh
,
S. W.
,
Rim
,
D. C.
, and
Kim
,
T. S.
,
2007
, “
A Multi-Center Clinical Study of Posterior Lumbar Interbody Fusion With the Expandable Stand-Alone Cage (Tyche® Cage) for Degenerative Lumbar Spinal Disorders
,”
J. Korean Neurosurg. Soc.
,
42
(
4
), pp.
251
257
.10.3340/jkns.2007.42.4.251
18.
Neely
,
W. F.
,
Fichtel
,
F.
,
Del Monaco
,
D. C.
, and
Block
,
J. E.
,
2016
, “
Treatment of Symptomatic Lumbar Disc Degeneration With the VariLift-L Interbody Fusion System: Retrospective Review of 470 Cases
,”
Int. J. Spine Surg.
,
10
, p.
15
.10.14444/3015
19.
Alimi
,
M.
,
Shin
,
B.
,
Macielak
,
M.
,
Hofstetter
,
C. P.
,
Njoku
,
I.
, Jr.
,
Tsiouris
,
A. J.
,
Elowitz
,
E.
, and
Härtl
,
R.
,
2015
, “
Expandable Polyaryl-Ether-Ether-Ketone Spacers for Interbody Distraction in the Lumbar Spine
,”
Global Spine J.
,
5
(
3
), pp.
169
178
.10.1055/s-0035-1552988
20.
Kolcun
,
J. P. G.
,
Brusko
,
G. D.
,
Basil
,
G. W.
,
Epstein
,
R.
, and
Wang
,
M. Y.
,
2019
, “
Endoscopic Transforaminal Lumbar Interbody Fusion Without General Anesthesia: Operative and Clinical Outcomes in 100 Consecutive Patients With a Minimum 1-Year Follow-Up
,”
Neurosurg. Focus
,
46
(
4
), p.
E14
.10.3171/2018.12.FOCUS18701
21.
Zheng
,
X.
,
Chaudhari
,
R.
,
Wu
,
C.
,
Mehbod
,
A. A.
,
Erkan
,
S.
, and
Transfeldt
,
E. E.
,
2010
, “
Biomechanical Evaluation of an Expandable Meshed Bag Augmented With Pedicle or Facet Screws for Percutaneous Lumbar Interbody Fusion
,”
Spine J.
,
10
(
11
), pp.
987
993
.10.1016/j.spinee.2010.08.016
22.
Mica
,
M. C.
,
Voronov
,
L. I.
,
Carandang
,
G.
,
Havey
,
R. M.
,
Wojewnik
,
B.
, and
Patwardhan
,
A. G.
,
2018
, “
Biomechanics of an Expandable Lumbar Interbody Fusion Cage Deployed Through Transforaminal Approach
,”
Int. J. Spine Surg.
,
12
(
4
), pp.
520
527
.10.14444/5063
23.
Woodward
,
J.
,
Koro
,
L.
,
Richards
,
D.
,
Keegan
,
C.
,
Fessler
,
R. D.
, and
Fessler
,
R. G.
,
2022
, “
Expandable Versus Static Transforaminal Lumbar Interbody Fusion Cages: 1-Year Radiographic Parameters and Patient-Reported Outcomes
,”
World Neurosurg.
,
159
, pp.
e1
e7
.10.1016/j.wneu.2021.11.056
24.
Tan
,
L. A.
,
Rivera
,
J.
,
Tan
,
X. A.
,
Le
,
V. P.
,
Khoo
,
L. T.
, and
Berven
,
S. H.
,
2020
, “
Clinical and Radiographic Outcomes After Minimally Invasive Transforaminal Lumbar Interbody Fusion—Early Experience Using a Biplanar Expandable Cage for Lumbar Spondylolisthesis
,”
Int. J. Spine Surg.
,
14
(
s3
), pp.
S39
S44
.10.14444/7125
25.
Gafford
,
J.
,
Ding
,
Y.
,
Harris
,
A.
,
McKenna
,
T.
,
Polygerinos
,
P.
,
Holland
,
D.
,
Walsh
,
C.
, and
Moser
,
A.
,
2015
, “
Shape Deposition Manufacturing of a Soft, Atraumatic, and Deployable Surgical Grasper
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021006
.10.1115/1.4029493
26.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng.: A
,
419
(
1–2
), pp.
131
137
.10.1016/j.msea.2005.12.016
27.
Ranzani
,
T.
,
Russo
,
S.
,
Schwab
,
F.
,
Walsh
,
C. J.
, and
Wood
,
R. J.
,
2017
, “
Deployable Stabilization Mechanisms for Endoscopic Procedures
,” IEEE International Conference on Robotics and Automation (
ICRA
), Singapore, May 29–June 03, pp.
1125
1131
.10.1109/ICRA.2017.7989134
28.
Sargent
,
B.
,
Butler
,
J.
,
Seymour
,
K.
,
Bailey
,
D.
,
Jensen
,
B.
,
Magleby
,
S.
, and
Howell
,
L.
,
2020
, “
An Origami-Based Medical Support System to Mitigate Flexible Shaft Buckling
,”
ASME J. Mech. Rob.
,
12
(
4
), p.
041005
.10.1115/1.4045846
29.
Taylor
,
A.
,
Miller
,
M.
,
Fok
,
M.
,
Nilsson
,
K.
, and
Tsz Ho Tse
,
Z.
,
2016
, “
Intracardiac Magnetic Resonance Imaging Catheter With Origami Deployable Mechanisms
,”
ASME J. Med. Devices
,
10
(
2
), p.
020957
.10.1115/1.4033151
30.
Huxman
,
C.
, and
Butler
,
J.
,
2021
, “
A Systematic Review of Compliant Mechanisms as Orthopedic Implants
,”
ASME J. Med. Devices
,
15
(
4
), p.
040802
.10.1115/1.4052011
31.
Dodgen
,
E.
,
Stratton
,
E.
,
Bowden
,
A.
, and
Howell
,
L.
,
2012
, “
Spinal Implant Development, Modeling, and Testing to Achieve Customizable and Nonlinear Stiffness
,”
ASME J. Med. Devices
,
6
(
2
), p.
021010
.10.1115/1.4006543
32.
Mattson
,
C. A.
, and
Sorensen
,
C. D.
,
2017
, Fundamentals of Product Development,
CreateSpace Independent Publishing Platform
, Scotts Valley, CA.https://www.scribd.com/presentation/372750951/Fundamentals-of-Product-Development
33.
Ynchausti
,
C.
,
Brown
,
N.
,
Magleby
,
S. P.
,
Bowden
,
A. E.
, and
Howell
,
L. L.
,
2021
, “
Deployable Euler Spiral Connectors
,”
ASME J. Mech. Rob.
,
14
(
2
), p.
021003
.10.1115/1.4052319
34.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
35.
International, ASTM
,
2022
,
Standard Test Methods for Intervertebral Body Fusion Devices.
ASTM International
,
West Conshohocken, PA
.
36.
Peck
,
J. H.
,
Kavlock
,
K. D.
,
Showalter
,
B. L.
,
Ferrell
,
B. M.
,
Peck
,
D. G.
, and
Dmitriev
,
A. E.
,
2018
, “
Mechanical Performance of Lumbar Intervertebral Body Fusion Devices: An Analysis of Data Submitted to the Food and Drug Administration
,”
J. Biomech.
,
78
, pp.
87
93
.10.1016/j.jbiomech.2018.07.022
You do not currently have access to this content.