Abstract

A majority of robotic gait trainers to facilitate physical therapy for gait rehabilitation in humans are based on multidegree-of-freedom exoskeleton-based systems with sophisticated electro-mechanical hardware and software, and consequently remain inaccessible to vast sections of the populations around the world. This study seeks to advance the development of a single degree-of-freedom (DOF) gait trainer for gait therapy for individuals with neuromuscular impairments. The goal is to offer a cost-effective, accessible solution to cater to the global need for gait rehabilitation. We build upon the previous gait trainer design based on Jansen mechanism and provide an in-depth analysis and experimental validation of its kinematic performance. The device's performance is also tested and successfully demonstrated through trials involving two healthy individuals to examine its kinematic behavior under human-induced load conditions. The gait trainer demonstrates satisfactory performance under both no load conditions and a 2 kg load, exhibiting an area difference of 1% and 7%, respectively. However, when subjected to a 5 kg loading condition, a significant area difference of 27% is observed, primarily attributed to the cantilever loading at the driving shaft. A method to adjust link lengths based on specific human gait trajectories is proposed and validated. Additionally, a cost-effective tool for ankle trajectory measurement is introduced to establish a ground truth. The study demonstrates the potential of an affordable, single DOF gait trainer in facilitating high-volume therapy for those with walking disorders. This research represents a step toward making gait therapy more accessible worldwide.

References

1.
Hesse
,
S.
, and
Uhlenbrock
,
D.
,
2000
, “
A Mechanized Gait Trainer for Restoration of Gait
,”
J. Rehabil. Res. Dev.
,
37
(
6
), pp.
701
708
.https://pubmed.ncbi.nlm.nih.gov/11321006/
2.
Riener
,
R.
,
Lünenburger
,
L.
,
Maier
,
I. C.
,
Colombo
,
G.
, and
Dietz
,
V.
,
2010
, “
Locomotor Training in Subjects With Sensori-Motor Deficits: An Overview of the Robotic Gait Orthosis Lokomat
,”
J. Healthcare Eng.
,
1
(
2
), pp.
197
216
.10.1260/2040-2295.1.2.197
3.
Hidler
,
J.
,
Brennan
,
D.
,
Nichols
,
D.
,
Brady
,
K.
, and
Nef
,
T.
,
2011
, “
Zerog: Overground Gait and Balance Training System
,”
J. Rehabil. Res. Develop.
,
48
(
4
), pp.
287
298
.10.1682/JRRD.2010.05.0098
4.
Bannwart
,
M.
,
Bolliger
,
M.
,
Lutz
,
P.
,
Gantner
,
M.
, and
Rauter
,
G.
,
2016
, “
Systematic Analysis of Transparency in the Gait Rehabilitation Device the Float
,”
14th International Conference on Control, Automation, Robotics and Vision (ICARCV)
,
Phuket, Thailand
, Nov. 13–15, pp.
1
6
.10.1109/ICARCV.2016.7838710
5.
Nedergård
,
H.
,
Arumugam
,
A.
,
Sandlund
,
M.
,
Bråndal
,
A.
, and
Häger
,
C. K.
,
2021
, “
Effect of Robotic-Assisted Gait Training on Objective Biomechanical Measures of Gait in Persons Post-Stroke: A Systematic Review and Meta-Analysis
,”
J. Neuroeng. Rehabil.
,
18
(
1
), pp.
1
22
.10.1186/s12984-021-00857-9
6.
Rodgers
,
H.
,
Bosomworth
,
H.
,
Krebs
,
H. I.
,
van Wijck
,
F.
,
Howel
,
D.
,
Wilson
,
N.
,
Aird
,
L.
, et al.,
2019
, “
Robot Assisted Training for the Upper Limb After Stroke (Ratuls): A Multicentre Randomised Controlled Trial
,”
Lancet
,
394
(
10192
), pp.
51
62
.10.1016/S0140-6736(19)31055-4
7.
Mehrholz
,
J.
,
Thomas
,
S.
,
Kugler
,
J.
,
Pohl
,
M.
,
Elsner
,
B.
, and
Cochrane Stroke Group
,
2020
, “
Electromechanical-Assisted Training for Walking After Stroke
,”
Cochrane Database Syst. Rev.
,
2020
(
10
), p.
CD006185
.10.1002/14651858.CD006185.pub4
8.
Banala
,
S. K.
,
Kim
,
S. H.
,
Agrawal
,
S. K.
, and
Scholz
,
J. P.
,
2009
, “
Robot Assisted Gait Training With Active Leg Exoskeleton (ALEX)
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
17
(
1
), pp.
2
8
.10.1109/TNSRE.2008.2008280
9.
Vallery
,
H.
,
Veneman
,
J.
,
Van Asseldonk
,
E.
,
Ekkelenkamp
,
R.
,
Buss
,
M.
, and
Van Der Kooij
,
H.
,
2008
, “
Compliant Actuation of Rehabilitation Robots
,”
IEEE Rob. Autom. Mag.
,
15
(
3
), pp.
60
69
.10.1109/MRA.2008.927689
10.
Vashista
,
V.
,
Jin
,
X.
, and
Agrawal
,
S. K.
,
2014
, “
Active Tethered Pelvic Assist Device (a-Tpad) to Study Force Adaptation in Human Walking
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
, May 31–June 7, pp.
718
723
.10.1109/ICRA.2014.6906933
11.
Iyer
,
S. S.
,
Joseph
,
J. V.
,
Sanjeevi
,
N. S. S.
,
Singh
,
Y.
, and
Vashista
,
V.
,
2019
, “
Development and Applicability of a Cable-Driven Wearable Adaptive Rehabilitation Suit (Wears)
,”
28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)
, New Delhi, India, Oct. 14–18, pp.
1
6
.10.1109/RO-MAN46459.2019.8956397
12.
Freivogel
,
S.
,
Mehrholz
,
J.
,
Husak-Sotomayor
,
T.
, and
Schmalohr
,
D.
,
2008
, “
Gait Training With the Newly Developed “Lokohelp”-System is Feasible for Non-Ambulatory Patients After Stroke, Spinal Cord and Brain Injury. A Feasibility Study
,”
Brain Inj.
,
22
(
7–8
), pp.
625
632
.10.1080/02699050801941771
13.
Ji
,
Z.
, and
Manna
,
Y.
,
2008
, “
Synthesis of a Pattern Generation Mechanism for Gait Rehabilitation
,”
ASME J. Med. Devices
,
2
(
3
), p.
031004
.10.1115/1.2975964
14.
Kora
,
K.
,
Stinear
,
J.
, and
McDaid
,
A.
,
2017
, “
Design, Analysis, and Optimization of an Acute Stroke Gait Rehabilitation Device
,”
ASME J. Med. Devices
,
11
(
1
), p.
014503
.10.1115/1.4035127
15.
Tsuge
,
B. Y.
, and
Michael McCarthy
,
J.
,
2016
, “
An Adjustable Single Degree-of-Freedom System to Guide Natural Walking Movement for Rehabilitation
,”
ASME J. Med. Devices
,
10
(
4
), p.
044501
.10.1115/1.4033329
16.
Tsuge
,
B. Y.
, and
McCarthy
,
J. M.
,
2015
, “
Synthesis of a 10-Bar Linkage to Guide the Gait Cycle of the Human Leg
,”
ASME
Paper No. DETC2015-47723.10.1115/DETC2015-47723
17.
Shao
,
Y.
,
Xiang
,
Z.
,
Liu
,
H.
, and
Li
,
L.
,
2016
, “
Conceptual Design and Dimensional Synthesis of Cam-Linkage Mechanisms for Gait Rehabilitation
,”
Mech. Mach. Theory
,
104
, pp.
31
42
.10.1016/j.mechmachtheory.2016.05.018
18.
Yul Shin
,
S.
,
Deshpande
,
A. D.
, and
Sulzer
,
J.
,
2018
, “
Design of a Single Degree-of-Freedom, Adaptable Electromechanical Gait Trainer for People With Neurological Injury
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
044503
.10.1115/1.4039973
19.
Sabaapour
,
M. R.
,
Lee
,
H.
,
Afzal
,
M. R.
,
Eizad
,
A.
, and
Yoon
,
J.
,
2019
, “
Development of a Novel Gait Rehabilitation Device With Hip Interaction and a Single DOF Mechanism
,”
International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
, May 20–24, pp.
1492
1498
.10.1109/ICRA.2019.8794269
20.
Haghjoo
,
M. R.
,
Lee
,
H.
,
Afzal
,
M. R.
,
Eizad
,
A.
, and
Yoon
,
J.
,
2021
, “
Mech-Walker: A Novel Single-DOF Linkage Device With Movable Frame for Gait Rehabilitation
,”
IEEE/ASME Trans. Mechatron.
,
26
(
1
), pp.
13
23
.10.1109/TMECH.2020.2993799
21.
Lee
,
J.
,
Li
,
L.
,
Shin
,
S. Y.
,
Deshpande
,
A. D.
, and
Sulzer
,
J.
,
2021
, “
Kinematic Comparison of Single Degree-of-Freedom Robotic Gait Trainers
,”
Mech. Mach. Theory
,
159
, p.
104258
.10.1016/j.mechmachtheory.2021.104258
22.
García
,
E. A. M.
,
2015
, “
Numerical Modelling in Robotics
,”
OmniaScience
,
Barcelona, Spain
.
23.
Yun
,
Y.
,
Kim
,
H.-C.
,
Shin
,
S. Y.
,
Lee
,
J.
,
Deshpande
,
A. D.
, and
Kim
,
C.
,
2014
, “
Statistical Method for Prediction of Gait Kinematics With Gaussian Process Regression
,”
J. Biomech.
,
47
(
1
), pp.
186
192
.10.1016/j.jbiomech.2013.09.032
24.
Mendoza-Crespo
,
R.
,
Torricelli
,
D.
,
Huegel
,
J. C.
,
Gordillo
,
J. L.
,
Pons
,
J. L.
, and
Soto
,
R.
,
2019
, “
An Adaptable Human-Like Gait Pattern Generator Derived From a Lower Limb Exoskeleton
,”
Front. Rob. AI
,
6
, p.
36
.10.3389/frobt.2019.00036
25.
Fukuchi
,
C. A.
,
Fukuchi
,
R. K.
, and
Duarte
,
M.
,
2018
, “
A Public Dataset of Overground and Treadmill Walking Kinematics and Kinetics in Healthy Individuals
,”
PeerJ
,
6
, p.
e4640
.10.7717/peerj.4640
26.
Stolze
,
H.
,
Kuhtz-Buschbeck
,
J. P.
,
Drücke
,
H.
,
Jöhnk
,
K.
,
Illert
,
M.
, and
Deuschl
,
G.
,
2001
, “
Comparative Analysis of the Gait Disorder of Normal Pressure Hydrocephalus and Parkinson's Disease
,”
J. Neurol., Neurosurg. Psychiatry
,
70
(
3
), pp.
289
297
.10.1136/jnnp.70.3.289
27.
Cajigas
,
I.
,
Koenig
,
A.
,
Severini
,
G.
,
Smith
,
M.
, and
Bonato
,
P.
,
2017
, “
Robot-Induced Perturbations of Human Walking Reveal a Selective Generation of Motor Adaptation
,”
Sci. Rob.
,
2
(
6
), p.
eaam7749
.10.1126/scirobotics.aam7749
28.
Severini
,
G.
,
Koenig
,
A.
,
Adans-Dester
,
C.
,
Cajigas
,
I.
,
Cheung
,
V. C.
, and
Bonato
,
P.
,
2020
, “
Robot-Driven Locomotor Perturbations Reveal Synergy-Mediated, Context-Dependent Feedforward and Feedback Mechanisms of Adaptation
,”
Sci. Rep.
,
10
(
1
), pp.
1
16
.10.1038/s41598-020-61231-8
29.
Jadav
,
S. V.
,
Riswadkar
,
S.
,
Kadam
,
S. D.
, and
Palanthandalam-Madapusi
,
H.
,
2023
, “
Variable Impedance Learning Control With Faster Re-Learning and Reduced Initial Errors in Re-Perturbation for Robots Operating in Divergent Force Fields
,”
Proceedings of the 2023 6th International Conference on Advances in Robotics
, Ropar, India, July 5–8, pp.
1
7
.10.1145/3610419.3610423
30.
Jadav
,
S.
, and
Palanthandalam-Madapusi
,
H. J.
,
2024
, “
Configuration and Force-Field Aware Variable Impedance Control With Faster Re-Learning
,”
J. Intell. Rob. Syst.
,
110
(
1
), p.
3
.10.1007/s10846-023-02022-x
31.
Jadav
,
S.
,
Heidersberger
,
J.
,
Ott
,
C.
, and
Lee
,
D.
,
2024
, “
Shared Autonomy Via Variable Impedance Control and Virtual Potential Fields for Encoding Human Demonstrations
,”
arXiv:2403.12720v1
.10.48550/arXiv.2403.12720
You do not currently have access to this content.