Parameter estimation techniques have been utilized in the development of a methodology to noninvasively measure blood perfusion using a new thermal surface probe. The core of this probe is comprised of a small, lightweight heat flux sensor that is placed in contact with tissue and provides time-resolved signals of heat flux and surface temperature while the probe is cooled by air jets. Parameter estimation techniques were developed that incorporate heat flux and temperature data with calculated data from a biothermal model of the tissue and probe. The technique simultaneously estimates blood perfusion and thermal contact resistance between the probe and tissue. Validation of this concept was carried out by experimentation with controlled flow through nonbiological porous media. Warm water was circulated through a fine pore sponge to provide a phantom model for blood perfusion through biological tissue. The parameter estimation technique was applied to measurements taken over a range of flow rates. Heat flux and temperature measurements and the resulting perfusion estimates correlated well with the experimentally imposed perfusion rate. This research helps establish the validity of using this method to develop a practical, noninvasive probe to clinically measure blood perfusion.

1.
Khot
,
M. P.
,
Maitz
,
P. K. M.
,
Phillips
,
B. R.
,
Bowman
,
H. F.
,
Pribaz
,
J. J.
, and
Orgill
,
D. P.
, 2005, “
Thermal Diffusion Probe Analsis of Perfusion Changes in Vascular Occlusions of Rabbit Pedicle Flaps
,”
Plast. Reconstr. Surg.
0032-1052,
115
, pp.
1103
1109
.
2.
Stewart
,
C. J.
,
Frank
,
R.
,
Forrester
,
K. R.
,
Tulip
,
J.
,
Lindsay
,
R.
, and
Bray
,
R. C.
, 2005, “
A Comparison of Two Laser-Based Methods for Determination of Burn Scar Perfusion: Laser Doppler Versus Laser Speckle Imaging
,”
Burns
0305-4179,
31
, pp.
744
752
.
3.
Wintermark
,
M.
,
Sesay
,
M.
,
Barbier
,
E.
,
Borbely
,
K.
,
Dillon
,
W. P.
,
Eastwood
,
J. D
,
Glenn
,
T. C.
,
Grandin
,
C. B.
,
Pedraza
,
S.
,
Soustiel
,
J.-F.
,
Nariai
,
T.
,
Zaharchuk
,
G.
,
Caille
,
J.-M.
,
Dousset
,
V.
, and
Yonas
,
H.
, 2005, “
Comparative Overview of Brain Perfusion Imaging Techniques
,”
Stroke
0039-2499,
36
, pp.
83
99
.
4.
1990,
Laser-Doppler Blood Flowmetry
,
A. P.
Shepherd
and
P. Å.
Öberg
, eds.,
Kluwer Academic
,
Boston MA.
.
5.
Richardson
,
R.
,
Haseler
,
L. J.
,
Nygren
,
A. T.
,
Bluml
,
S.
, and
Frank
,
L. R.
, 2001, “
Local Perfusion and Metabolic Demand During Exercise: A Noninvasive MRI Method of Assessment
,”
J. Appl. Physiol.
8750-7587,
91
, pp.
1845
1853
.
6.
Dias
,
M.
,
Hadgraft
,
J.
,
Glover
,
P. M.
, and
McDonald
,
P. J.
, 2003, “
Stray Field Magnetic Resonance Imaging: A Preliminary Study of Skin Hydration
,”
J. Phys. D
0022-3727,
36
. pp.
364
368
.
7.
Bowman
,
H. F.
, 1985, “
Estimation of Tissue Blood Flow
,”
Heat Transfer in Medicine and Biology
,
A.
Shitzer
and
R. C.
Eberhart
, eds,
Plenum
,
New York
, Vol.
1
, Chap. 9, pp.
193
230
.
8.
Chato
,
J. C.
, 1985, “
Measurements of Thermal Properties of Biological Materials
,”
Heat Transfer in Medicine and Biology
,
A.
Shitzer
and
R. C.
Eberhart
, eds.,
Plenum
,
New York
, Vol.
1
, Chap. 8, pp.
93
122
.
9.
Eberhart
,
R. C.
,
Shitzer
,
A.
, and
Hernandez.
,
E. J.
, 1980, “
Thermal Dilution Methods: Estimation of Tissue Blood Flow and Metabolism
,” in Thermal Characteristics of Tissue: Applications in Detection and Treatment,
Ann. N.Y. Acad. Sci.
0077-8923,
35
, pp.
107
132
.
10.
Kress
,
R.
, and
Roemer
,
R.
, 1987, “
A Comparative Analysis of Thermal Blood Perfusion Measurement Techniques
,”
ASME J. Biomech. Eng.
0148-0731,
109
, pp.
218
225
.
11.
Newman
,
W. H.
,
Bowman
,
H. F.
,
Orgill
,
D. P.
, and
Klar
,
E.
, 1995, “
A Methodology for In Vivo Measurement of Blood Flow in Small Tissue Volumes
,”
Advances in Heat and Mass Transfer in Biotechnology
,
L. J.
Hayes
, ed.,
ASME
,
New York
, pp.
99
105
.
12.
Vajkoczy
,
P.
,
Roth
,
H.
,
Horn
,
P.
,
Lucke
,
T.
,
Thome
,
C.
,
Hubner
,
U.
,
Martin
,
G.
,
Zappletal
,
C.
,
Klar
,
E.
,
Schilling
,
L.
, and
Schmiedek
,
P.
, 2000, “
Continuous Monitoring of Regional Cerebral Blood Flow: Experimental and Clinical Validation of a Novel Thermal Diffusion Microprobe
,”
J. Neurosurg.
0022-3085,
93
, pp.
265
274
.
13.
Valvano
,
J. W.
, and
Nho
,
S.
, 1991, “
Tissue Thermal Diffusivity Measured With Sinusoidally Heated Thermistors
,”
Advances in Biological Heat and Mass Transfer
,
J. J.
McGrath
, ed.,
ASME
,
New York
, pp.
9
14
.
14.
Patel
,
P. A.
,
Valvano
,
J. W.
,
Pearce
,
J. A.
,
Prahl
,
S. A.
, and
Denham
,
C. R.
, 1987, “
A Self-Heated Thermistor Technique to Measure Effective Thermal Properties From the Tissue Surface
,”
ASME J. Biomech. Eng.
0148-0731,
109
, pp.
330
335
.
15.
Wei
,
D.
,
Saidel
,
G.
, and
Jones
,
S.
, 1995, “
Estimation of Cerebral Blood Flow From Thermal Measurement
,”
ASME J. Biomech. Eng.
0148-0731,
117
, pp.
74
85
.
16.
Castellana
,
F. S.
,
Skalak
,
R.
,
Cho
,
J. M.
, and
Case
,
R. B.
, 1983, “
Steady-State Analysis and Evaluation of a New Thermal Sensor for Surface Measurements of Tissue Perfusion
,”
Ann. Biomed. Eng.
0090-6964,
11
, pp.
101
115
.
17.
Walsh
,
J. T.
, and
Bowman
,
H. F.
, 1984, “
A Noninvasive Technique for Quantifying Tissue Perfusion
,”
Advances in Bioengineering
,
R. L.
Spilker
, ed.,
ASME
,
New York
, pp.
5
6
.
18.
Peng
,
J.
,
Xia
,
Y.
,
Gao
,
T.
,
Lei
,
X.
, and
Zhao
,
S.
, 2000, “
A Surface Heat Disturbance Method for Measuring Local Tissue Blood Perfusion Rate
,”
Heat Transfer - Asian Research
,
29
(
1
), pp.
34
44
.
19.
Holti.
,
G.
, and
Mitchell
,
K.
, 1979, “
Estimation of the Nutrient Skin Blood Flow Using a Non-Invasive Segmented Thermal Clearance Probe
,”
Non-Invasive Physiological Measurements
,
E.
Rolfe
, ed.,
Academic
,
London
, Vol.
1
, pp.
113
123
.
20.
Valvano
,
J. W.
,
Badeau
,
A. F.
,
Prahl
,
S. A.
,
Chan
,
J. C.
, and
Pearce
,
J. A.
, 1988, “
Thermal Camera Imaging to Measure Tissue Surface Perfusion
,”
Association for the Advancement of Medical Instrumentation 23rd Annual Meeting
,
Washington, DC
, May 14–18.
21.
Cui
,
Z. F.
, and
Barbenel
,
J. C.
, 1991, “
The Influence of Model Parameter Values on the Prediction of Skin Surface Temperature: II. Contact Problems
,”
Phys. Med. Biol.
0031-9155,
36
, pp.
1607
1620
.
22.
Anderson
,
G. T.
, and
Burnside
,
G.
, 1990, “
A Noninvasive Technique to Measure Perfusion Using a Focused Ultrasound Heating Source and a Tissue Surface Temperature Measurement
,”
Advances in Measuring and Computing Temperatures in Biomedicine: Thermal Tomography Techniques, Bioheat Transfer Models
,
R. B.
Roemer
,
J. W.
Valvano
,
L.
Hayes
, and
G. T.
Anderson
, eds.,
ASME
,
New York
, pp.
31
36
.
23.
O’Reilly
,
T.
,
Gonzales
,
T.
, and
Diller
,
T.
, 1996, “
Development of a Noninvasive Blood Perfusion Probe
,”
Advances in Biological Heat and Mass Transfer
,
L. J.
Hayes
and
S.
Clegg
, eds.,
ASME
,
New York
, HTD-Vol. 337/BED, Vol.
34
, pp.
67
73
.
24.
Scott
,
E. P.
,
Robinson
,
P.
, and
Diller
,
T. E.
, 1998, “
Development of Methodologies for the Estimation of Blood Perfusion Using a Minimally Invasive Thermal Probe
,”
Meas. Sci. Technol.
0957-0233,
9
(
6
), pp.
888
897
.
25.
Terrell
,
J. P.
, 1996, “
New High Sensitivity, Low Thermal Resistance Surface Mounted Heat Flux Transducer
,”
Proceedings of 42nd International Instrumentation Symposium
,
ISA
,
Triangle Park, NC
, pp.
235
249
.
26.
Pennes
,
H.
, 1948, “
Analysis of Tissue and Arteriole Blood Temperatures in the Resting Forearm
,”
J. Appl. Physiol.
0021-8987,
1
, pp.
93
122
.
27.
Nelson
,
D. A.
, 1998, “
Invited Editorial on ‘Pennes’ 1948 Paper Revisited
,”
J. Appl. Physiol.
8750-7587,
85
, pp.
2
3
.
28.
Robinson
,
P.
, “
Development of Methodologies for the Noninvasive Estimation of Blood Perfusion
,” M.S. thesis, Virginia Tech, 1998.
You do not currently have access to this content.