Abstract

Following the diagnosis of unilateral cervical radiculopathy and need for surgical intervention, anterior cervical diskectomy and fusion (conventional fusion) and posterior cervical foraminotomy are common options. Although patient outcomes may be similar between the two procedures, their biomechanical effects have not been fully compared using a head-to-head approach, particularly, in relation to the amount of facet resection and internal load-sharing between spinal segments and components. The objective of this investigation was to compare load-sharing between conventional fusion and graded foraminotomy facet resections under physiological loading. A validated finite element model of the cervical spinal column was used in the study. The intact spine was modified to simulate the two procedures at the C5–C6 spinal segment. Flexion, extension, and lateral bending loads were applied to the intact, graded foraminotomy, and conventional fusion spines. Load-sharing was determined using range of motion data at the C5–C6 and immediate adjacent segments, facet loads at the three segments, and disk pressures at the adjacent segments. Results were normalized with respect to the intact spine to compare surgical options. Conventional fusion leads to increased motion, pressure, and facet loads at adjacent segments. Foraminotomy leads to increased motion and anterior loading at the index level, and motions decrease at adjacent levels. In extension, the left facet load decreases after foraminotomy. Recognizing that foraminotomy is a motion preserving alternative to conventional fusion, this study highlights various intrinsic biomechanical factors and potential instability issues with more than one-half facet resection.

References

1.
Collaborators
,
2017
, “
Global, Regional, and National Under-5 Mortality, Adult Mortality, Age-Specific Mortality, and Life Expectancy, 1970–2016: A Systematic Analysis for the Global Burden of Disease Study 2016
,”
The Lancet
,
390
(
10100
), pp.
1084
1150
.10.1016/S0140-6736(17)31833-0
2.
Goel
,
A.
, and
Shah
,
A.
,
2011
, “
Facetal Distraction as Treatment for Single- and Multilevel Cervical Spondylotic Radiculopathy and Myelopathy: A Preliminary Report
,”
J. Neurosurg. Spine
,
14
(
6
), pp.
689
696
.10.3171/2011.2.SPINE10601
3.
Han
,
X.
,
He
,
D.
,
Zhang
,
N.
,
Song
,
Q.
,
Wang
,
J.
, and
Tian
,
W.
,
2019
, “
Comparison of 10-Year Outcomes of Bryan Cervical Disc Arthroplasty for Myelopathy and Radiculopathy
,”
Orthop. Surg.
,
11
(
6
), pp.
1127
1134
.10.1111/os.12565
4.
Salemi
,
G.
,
Savettieri
,
G.
,
Meneghini
,
F.
,
Benedetto
,
M. E.
,
Ragonese
,
P.
,
Morgante
,
L.
,
Reggio
,
A.
,
Patti
,
F.
,
Grigoletto
,
F.
, and
Perri
,
R.
,
2009
, “
Prevalence of Cervical Spondylotic Radiculopathy: A Door-to-Door Survey in a Sicilian Municipality
,”
Acta Neurol. Scand.
,
93
(
2–3
), pp.
184
188
.10.1111/j.1600-0404.1996.tb00196.x
5.
Alvin
,
M. D.
,
Abbott
,
E. E.
,
Lubelski
,
D.
,
Kuhns
,
B.
,
Nowacki
,
A. S.
,
Steinmetz
,
M. P.
,
Benzel
,
E. C.
, and
Mroz
,
T. E.
,
2014
, “
Cervical Arthroplasty: A Critical Review of the Literature
,”
Spine J.
,
14
(
9
), pp.
2231
2245
.10.1016/j.spinee.2014.03.047
6.
Burkus
,
J. K.
,
Traynelis
,
V. C.
,
Haid
,
R. W.
, Jr.
, and
Mummaneni
,
P. V.
,
2014
, “
Clinical and Radiographic Analysis of an Artificial Cervical Disc: 7-Year Follow-Up From the Prestige Prospective Randomized Controlled Clinical Trial: Clinical Article
,”
J. Neurosurg. Spine
,
21
(
4
), pp.
516
528
.10.3171/2014.6.SPINE13996
7.
Fehlings
,
M. G.
, and
Gray
,
R. J.
,
2009
, “
Posterior Cervical Foraminotomy for the Treatment of Cervical Radiculopathy
,”
J. Neurosurg. Spine
,
10
(
4
), pp.
343
344
.10.3171/2009.1.SPINE08899
8.
Sahai
,
N.
,
Changoor
,
S.
,
Dunn
,
C. J.
,
Sinha
,
K.
,
Hwang
,
K. S.
,
Faloon
,
M.
, and
Emami
,
A.
,
2019
, “
Minimally Invasive Posterior Cervical Foraminotomy as an Alternative to Anterior Cervical Discectomy and Fusion for Unilateral Cervical Radiculopathy
,”
Spine
,
44
(
24
), pp.
1731
1739
.10.1097/BRS.0000000000003156
9.
Dodwad
,
S. J.
,
Dodwad
,
S. N.
,
Prasarn
,
M. L.
,
Savage
,
J. W.
,
Patel
,
A. A.
, and
Hsu
,
W. K.
,
2016
, “
Posterior Cervical Foraminotomy: Indications, Technique, and Outcomes
,”
Clin. Spine Surg.
,
29
(
5
), pp.
177
185
.10.1097/BSD.0000000000000384
10.
Fang
,
W.
,
Huang
,
L.
,
Feng
,
F.
,
Yang
,
B.
,
He
,
L.
,
Du
,
G.
,
Xie
,
P.
, and
Chen
,
Z.
,
2020
, “
Anterior Cervical Discectomy and Fusion Versus Posterior Cervical Foraminotomy for the Treatment of Single-Level Unilateral Cervical Radiculopathy: A Meta-Analysis
,”
J. Orthop. Surg. Res.
,
15
(
1
), p.
202
.10.1186/s13018-020-01723-5
11.
Kim
,
S. J.
,
Seo
,
J. S.
,
Lee
,
S. H.
, and
Bae
,
J.
,
2019
, “
Comparison of Anterior Cervical Foraminotomy and Posterior Cervical Foraminotomy for Treating Single Level Unilateral Cervical Radiculopathy
,”
Spine (Phila Pa 1976)
,
44
(
19
), pp.
1339
1347
.10.1097/BRS.0000000000003081
12.
Broekema
,
A. E. H.
,
Simões de Souza
,
N. F.
,
Soer
,
R.
,
Koopmans
,
J.
,
van Santbrink
,
H.
,
Arts
,
M. P.
,
Burhani
,
B.
, et al.,
2023
, “
Noninferiority of Posterior Cervical Foraminotomy versus Anterior Cervical Discectomy With Fusion for Procedural Success and Reduction in Arm Pain Among Patients With Cervical Radiculopathy at 1 Year: The FACET Randomized Clinical Trial
,”
JAMA Neurol.
,
80
(
1
), pp.
40
48
.10.1001/jamaneurol.2022.4208
13.
Witiw
,
C. D.
,
Smieliauskas
,
F.
,
O'Toole
,
J. E.
,
Fehlings
,
M. G.
, and
Fessler
,
R. G.
,
2019
, “
Comparison of Anterior Cervical Discectomy and Fusion to Posterior Cervical Foraminotomy for Cervical Radiculopathy: Utilization, Costs, and Adverse Events 2003 to 2014
,”
Neurosurgery
,
84
(
2
), pp.
413
420
.10.1093/neuros/nyy051
14.
John
,
J. D.
,
Arun
,
M. W.
,
Gurunathan
,
S. K.
, and
Yoganandan
,
N.
,
2017
, “
Cervical Spine Finite Element Model With Anatomically Accurate Asymmetric Intervertebral Discs
,”
Proceedings of the SB3C2017 Summer Biomechanics, Bioengineering and Biotransport Conference
, Tucson, AZ, June 21–24, pp.
1
2
.https://www.researchgate.net/publication/317836555_Cervical_spine_finite_element_model_with_anatomically_accurate_asymmetric_intervertebral_discs
15.
Yoganandan
,
N.
,
Purushothaman
,
Y.
,
Choi
,
H.
,
Jebaseelan
,
D.
, and
Baisden
,
J.
,
2021
, “
Biomechanical Effects of Uncinate Process Excision in Cervical Disc Arthroplasty
,”
Clin. Biomech. (Bristol, Avon)
,
89
, p.
105451
.10.1016/j.clinbiomech.2021.105451
16.
Purushothaman
,
Y.
,
Yoganandan
,
N.
,
Jebaseelan
,
D.
,
Choi
,
H.
, and
Baisden
,
J.
,
2020
, “
External and Internal Responses of Cervical Disc Arthroplasty and Anterior Cervical Discectomy and Fusion: A Finite Element Modeling Study
,”
J. Mech. Behav. Biomed. Mater.
,
106
, p.
103735
.10.1016/j.jmbbm.2020.103735
17.
Choi
,
H.
,
Baisden
,
J. L.
, and
Yoganandan
,
N.
,
2019
, “
A Comparative In Vivo Study of Semi-Constrained and Unconstrained Cervical Artificial Disc Prostheses
,”
Mil. Med.
,
184
(
Suppl. 1
), pp.
637
643
.10.1093/milmed/usy395
18.
Choi
,
H.
,
Purushothaman
,
Y.
,
Baisden
,
J.
, and
Yoganandan
,
N.
,
2020
, “
Unique Biomechanical Signatures of Bryan, Prodisc C, and Prestige LP Cervical Disc Replacements: A Finite Element Modelling Study
,”
Eur. Spine J.
,
29
(
11
), pp.
2631
2639
.10.1007/s00586-019-06113-y
19.
Purushothaman
,
Y.
,
Choi
,
H.
,
Yoganandan
,
N.
,
Jebaseelan
,
D.
,
Baisden
,
J.
, and
Kurpad
,
S.
,
2021
, “
A Comparison Study of Four Cervical Disk Arthroplasty Devices Using Finite Element Models
,”
Asian Spine J.
,
15
(
3
), pp.
283
293
.10.31616/asj.2020.0117
20.
Harrop
,
J. S.
,
Hanna
,
A.
,
Silva
,
M. T.
, and
Sharan
,
A.
,
2007
, “
Neurological Manifestations of Cervical Spondylosis: An Overview of Signs, Symptoms, and Pathophysiology
,”
Neurosurgery
,
60
(
1
), pp.
S1
14
.10.1227/01.NEU.0000215380.71097.EC
21.
Tumialan
,
L. M.
,
Ponton
,
R. P.
,
Cooper
,
A. N.
,
Gluf
,
W. M.
, and
Tomlin
,
J. M.
,
2019
, “
Rate of Return to Military Active Duty After Single and 2-Level Anterior Cervical Discectomy and Fusion: A 4-Year Retrospective Review
,”
Neurosurgery
,
85
(
1
), pp.
96
104
.10.1093/neuros/nyy230
22.
Tumialan
,
L. M.
,
Ponton
,
R. P.
,
Garvin
,
A.
, and
Gluf
,
W. M.
,
2010
, “
Arthroplasty in the Military: A Preliminary Experience With ProDisc-C and ProDisc-L
,”
Neurosurg. Focus
,
28
(
5
), p.
E18
.10.3171/2010.1.FOCUS102
23.
Huang
,
W.
,
Tian
,
Y.
,
Wang
,
H.
,
Zou
,
F.
,
Ma
,
X.
,
Jiang
,
J.
, and
Li
,
R.
,
2022
, “
Comparative Analysis of the Biomechanics of Anterior Cervical Discectomy and Fusion With Multiple Segmental Plates Fixation Versus Single Multilevel Plate Fixation: A Finite Element Study
,”
BMC Musculoskeletal Disord.
,
23
(
1
), p.
848
.10.1186/s12891-022-05796-7
24.
Hua
,
W.
,
Zhi
,
J.
,
Wang
,
B.
,
Ke
,
W.
,
Sun
,
W.
,
Yang
,
S.
,
Li
,
L.
, and
Yang
,
C.
,
2020
, “
Biomechanical Evaluation of Adjacent Segment Degeneration After One- or Two-Level Anterior Cervical Discectomy and Fusion Versus Cervical Disc Arthroplasty: A Finite Element Analysis
,”
Comput. Methods Programs Biomed.
,
189
, p.
105352
.10.1016/j.cmpb.2020.105352
25.
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Ghanayem
,
A. J.
,
Diener
,
H.
,
Meade
,
K. P.
,
Dunlap
,
B.
, and
Hodges
,
S. D.
,
2000
, “
Load-Carrying Capacity of the Human Cervical Spine in Compression Is Increased Under a Follower Load
,”
Spine (Phila Pa 1976)
,
25
(
12
), pp.
1548
1554
.10.1097/00007632-200006150-00015
26.
Panjabi
,
M. M.
,
2007
, “
Hybrid Multidirectional Test Method to Evaluate Spinal Adjacent-Level Effects
,”
Clin. Biomech. (Bristol, Avon)
,
22
(
3
), pp.
257
265
.10.1016/j.clinbiomech.2006.08.006
27.
Meyer
,
F.
,
Humm
,
J.
,
Yoganandan
,
N.
,
Leszczynski
,
A.
,
Bourdet
,
N.
,
Deck
,
C.
, and
Willinger
,
R.
,
2021
, “
Development of a Detailed Human Neck Finite Element Model and Injury Risk Curves Under Lateral Impact
,”
J. Mech. Behav. Biomed. Mater.
,
116
, p.
104318
.10.1016/j.jmbbm.2021.104318
28.
Wheeldon
,
J. A.
,
Pintar
,
F. A.
,
Knowles
,
S.
, and
Yoganandan
,
N.
,
2006
, “
Experimental Flexion/Extension Data Corridors for Validation of Finite Element Models of the Young, Normal Cervical Spine
,”
J. Biomech.
,
39
(
2
), pp.
375
380
.10.1016/j.jbiomech.2004.11.014
29.
Barrey
,
C.
,
Campana
,
S.
,
Persohn
,
S.
,
Perrin
,
G.
, and
Skalli
,
W.
,
2012
, “
Cervical Disc Prosthesis Versus Arthrodesis Using One-Level, Hybrid and Two-Level Constructs: An In Vitro Investigation
,”
Eur. Spine J.
,
21
(
3
), pp.
432
442
.10.1007/s00586-011-1974-4
30.
Barrey
,
C.
,
Rousseau
,
M. A.
,
Persohn
,
S.
,
Campana
,
S.
,
Perrin
,
G.
, and
Skalli
,
W.
,
2015
, “
Relevance of Using a Compressive Preload in the Cervical Spine: An Experimental and Numerical Simulating Investigation
,”
Eur. J. Orthop. Surg. Traumatol.
,
25
(
S1
), pp.
155
165
.10.1007/s00590-015-1625-2
31.
Bell
,
K. M.
,
Yan
,
Y.
,
Hartman
,
R. A.
, and
Lee
,
J. Y.
,
2018
, “
Influence of Follower Load Application on Moment-Rotation Parameters and Intradiscal Pressure in the Cervical Spine
,”
J. Biomech.
,
76
, pp.
167
172
.10.1016/j.jbiomech.2018.05.031
32.
Patel
,
V. V.
,
Wuthrich
,
Z. R.
,
McGilvray
,
K. C.
,
Lafleur
,
M. C.
,
Lindley
,
E. M.
,
Sun
,
D.
, and
Puttlitz
,
C. M.
,
2017
, “
Cervical Facet Force Analysis After Disc Replacement Versus Fusion
,”
Clin. Biomech.
,
44
, pp.
52
58
.10.1016/j.clinbiomech.2017.03.007
33.
Rao
,
R. D.
,
Gore
,
D. R.
,
Tang
,
S. J.
,
Rebholz
,
B. J.
,
Yoganandan
,
N.
, and
Wang
,
M.
,
2016
, “
Radiographic Changes in the Cervical Spine Following Anterior Arthrodesis: A Long-Term Analysis of 166 Patients
,”
J. Bone Jt. Surg., Am. Vol.
,
98
(
19
), pp.
1606
1613
.10.2106/JBJS.15.01061
34.
Qi
,
Y.
, and
Lewis
,
G.
,
2016
, “
Finite Element Analysis Study of the Influence of Simulated Surgical Methods on Kinematics of a Model of the Full Cervical Spine
,”
Spine Res.
,
2
(
1
), pp. 1–9.10.21767/2471-8173.100014
35.
Faizan
,
A.
,
Goel
,
V. K.
,
Biyani
,
A.
,
Garfin
,
S. R.
, and
Bono
,
C. M.
,
2012
, “
Adjacent Level Effects of Bi Level Disc Replacement, Bi Level Fusion and Disc Replacement Plus Fusion in Cervical Spine—A Finite Element Based Study
,”
Clin. Biomech. (Bristol, Avon)
,
27
(
3
), pp.
226
233
.10.1016/j.clinbiomech.2011.09.014
36.
Li
,
H.
,
Pei
,
B. Q.
,
Yang
,
J. C.
,
Hai
,
Y.
,
Li
,
D. Y.
, and
Wu
,
S. Q.
,
2015
, “
Load Rate of Facet Joints at the Adjacent Segment Increased After Fusion
,”
Chin. Med. J. (Engl.)
,
128
(
8
), pp.
1042
1046
.10.4103/0366-6999.155080
37.
Platt
,
A.
,
Fessler
,
R. G.
,
Traynelis
,
V. C.
, and
O'Toole
,
J. E.
,
2022
, “
Minimally Invasive Posterior Cervical Foraminotomy Versus Anterior Cervical Fusion and Arthroplasty: Systematic Review and Meta-Analysis
,”
Global Spine J.
,
12
(
7
), pp.
1573
1582
.10.1177/21925682211055094
38.
Tzaan
,
W. C.
,
2011
, “
Anterior Percutaneous Endoscopic Cervical Discectomy for Cervical Intervertebral Disc Herniation: Outcome, Complications, and Technique
,”
J. Spinal Disord. Tech.
,
24
(
7
), pp.
421
431
.10.1097/BSD.0b013e31820ef328
39.
Carrier
,
C. S.
,
Bono
,
C. M.
, and
Lebl
,
D. R.
,
2013
, “
Evidence-Based Analysis of Adjacent Segment Degeneration and Disease After ACDF: A Systematic Review
,”
Spine J.
,
13
(
10
), pp.
1370
1378
.10.1016/j.spinee.2013.05.050
40.
Zdeblick
,
T. A.
,
Zou
,
D.
,
Warden
,
K. E.
,
McCabe
,
R.
,
Kunz
,
D.
, and
Vanderby
,
R.
,
1992
, “
Cervical Stability After Foraminotomy. A Biomechanical In Vitro Analysis
,”
J. Bone Jt. Surg. Am.
,
74
(
1
), pp.
22
27
.10.2106/00004623-199274010-00004
41.
Cusick
,
J. F.
,
Yoganandan
,
N.
,
Pintar
,
F.
,
Myklebust
,
J.
, and
Hussain
,
H.
,
1988
, “
Biomechanics of Cervical Spine Facetectomy and Fixation Techniques
,”
Spine (Phila Pa 1976)
,
13
(
7
), pp.
808
812
.10.1097/00007632-198807000-00017
42.
Voo
,
L. M.
,
Kumaresan
,
S.
,
Yoganandan
,
N.
,
Pintar
,
F. A.
, and
Cusick
,
J. F.
,
1997
, “
Finite Element Analysis of Cervical Facetectomy
,”
Spine (Phila Pa 1976)
,
22
(
9
), pp.
964
969
.10.1097/00007632-199705010-00006
43.
Vedantam
,
A.
,
Harinathan
,
B.
,
Purushothaman
,
Y.
,
Scripp
,
S.
,
Banerjee
,
A.
,
Warraich
,
A.
,
Budde
,
M. D.
, and
Yoganandan
,
N.
,
2023
, “
Determinants of Spinal Cord Stress and Strain in Degenerative Cervical Myelopathy: A Patient-Specific Finite Element Study
,”
Biomech. Model. Mechanobiol.
, epub.10.1007/s10237-023-01732-3
44.
Vedantam
,
A.
,
Harinathan
,
B.
,
Warraich
,
A.
,
Budde
,
M. D.
, and
Yoganandan
,
N.
,
2023
, “
Differences in Spinal Cord Biomechanics After Laminectomy, Laminoplasty, and Laminectomy With Fusion for Degenerative Cervical Myelopathy
,”
J. Neurosurg. Spine
,
39
(
1
), pp.
1
12
.10.3171/2023.3.SPINE2340
45.
Vedantam
,
A.
,
Purushothaman
,
Y.
,
Harinathan
,
B.
,
Scripp
,
S.
,
Budde
,
M. D.
, and
Yoganandan
,
N.
,
2023
, “
Spinal Cord Stress After Anterior Cervical Diskectomy and Fusion: Results From a Patient-Specific Finite Element Model
,”
Ann. Biomed. Eng.
,
51
(
5
), pp.
1040
1051
.10.1007/s10439-022-03118-5
You do not currently have access to this content.