Abstract

Electric-field-assisted atomic force microscope (E-AFM) nanolithography is a novel polymer-patterning technique that has diverse applications. E-AFM uses a biased atomic force microscope (AFM) tip with conductive coatings to make patterns with little probe–sample interaction, which thereby avoids the tip wear that is a major issue for contact-mode AFM-based lithography, which usually requires a high probe–sample contact force to fabricate nanopatterns; however, the relatively large tip radius and large tip-sample separation limit its capacity to fabricate high-resolution nanopatterns. In this paper, we developed a contact mode E-AFM nanolithography approach to achieve high-resolution nanolithography of poly (methyl methacrylate) (PMMA) using a conductive AFM probe with a low stiffness (∼0.16 N/m). The nanolithography process generates features by biasing the AFM probe across a thin polymer film on a metal substrate. A small constant force (0.5–1 nN) applied on the AFM tip helps engage the tip-film contact, which enhances nanomachining resolution. This E-AFM nanolithography approach enables high-resolution nanopatterning with feature width down to ∼16 nm, which is less than one half of the nominal tip radius of the employed conductive AFM probes.

References

1.
Kaestner
,
M.
, and
Rangelow
,
I. W.
,
2012
, “
Scanning Probe Nanolithography on Calixarene
,”
Microelectron. Eng.
,
97
, pp.
96
99
.10.1016/j.mee.2012.05.042
2.
Sekkat
,
Z.
, and
Kawata
,
S.
,
2014
, “
Laser Nanofabrication in Photoresists and Azopolymers
,”
Laser Photonics Rev
,
8
(
1
), pp.
1
26
.10.1002/lpor.201200081
3.
Mack
,
C. A.
,
2017
, “
Reducing Roughness in Extreme Ultraviolet Lithography
,”
International Conference Extreme Ultraviolet Lithography on International Society for Optics and Photonics
, Monterey, CA, p.
104500P
.
4.
Pimpin
,
A.
, and
Srituravanich
,
W.
,
2012
, “
Review on Micro- and Nanolithography Techniques and Their Applications
,”
Eng. J.
,
16
(
1
), pp.
37
56
.10.4186/ej.2012.16.1.37
5.
Lee
,
J. A.
,
Lee
,
K.-C.
,
Park
,
S. I.
, and
Lee
,
S. S.
,
2008
, “
The Fabrication of Carbon Nanostructures Using Electron Beam Resist Pyrolysis and Nanomachining Processes for Biosensing Applications
,”
Nanotechnology
,
19
(
21
), p.
215302
.10.1088/0957-4484/19/21/215302
6.
Watt
,
F.
,
Bettiol
,
A. A.
,
Van Kan
,
J. A.
,
Teo
,
E. J.
, and
Breese
,
M.
,
2005
, “
Ion Beam Lithography and Nanofabrication: A Review
,”
Int. J. Nanosci.
,
04
(
3
), pp.
269
286
.10.1142/S0219581X05003139
7.
Li
,
L.
,
Hong
,
M.
,
Schmidt
,
M.
,
Zhong
,
M.
,
Malshe
,
A.
,
Huis in'tVeld
,
B.
, and
Kovalenko
,
V.
,
2011
, “
Laser Nano-Manufacturing – State of the Art and Challenges
,”
CIRP Ann.
,
60
(
2
), pp.
735
755
.10.1016/j.cirp.2011.05.005
8.
Tseng
,
A. A.
,
Notargiacomo
,
A.
, and
Chen
,
T. P.
,
2005
, “
Nanofabrication by Scanning Probe Microscope Lithography: A Review
,”
J. Vac. Sci. Technol. B
,
23
(
3
), pp.
877
894
.10.1116/1.1926293
9.
Duan
,
C.
,
Wang
,
W.
, and
Xie
,
Q.
,
2013
, “
Review Article: Fabrication of Nanofluidic Devices
,”
Biomicrofluidics
,
7
(
2
), p.
026501
.10.1063/1.4794973
10.
Kaestner
,
M.
,
Ivanov
,
T.
,
Schuh
,
A.
,
Ahmad
,
A.
,
Angelov
,
T.
,
Krivoshapkina
,
Y.
,
Budden
,
M.
,
Hofer
,
M.
,
Lenk
,
S.
,
Zoellner
,
J.-P.
,
Rangelow
,
I. W.
,
Reum
,
A.
,
Guliyev
,
E.
,
Holz
,
M.
, and
Nikolov
,
N.
,
2014
, “
Scanning Probes in Nanostructure Fabrication
,”
J. Vac. Sci. Technol. B
,
32
(
6
), p.
06F101
.10.1116/1.4897500
11.
Ryu Cho
,
Y. K.
,
Rawlings
,
C. D.
,
Wolf
,
H.
,
Spieser
,
M.
,
Bisig
,
S.
,
Reidt
,
S.
,
Sousa
,
M.
,
Khanal
,
S. R.
,
Jacobs
,
T.
, and
Knoll
,
A. W.
,
2017
, “
Sub-10 Nanometer Feature Size in Silicon Using Thermal Scanning Probe Lithography
,”
ACS Nano
,
11
(
12
), pp.
11890
11897
.10.1021/acsnano.7b06307
12.
Behzadirad
,
M.
,
Rishinaramangalam
,
A. K.
,
Feezell
,
D.
,
Busani
,
T.
,
Reuter
,
C.
,
Reum
,
A.
,
Holz
,
M.
,
Gotszalk
,
T.
,
Mechold
,
S.
,
Hofmann
,
M.
,
Ahmad
,
A.
,
Ivanov
,
T.
, and
Rangelow
,
I. W.
,
2020
, “
Field Emission Scanning Probe Lithography With GaN Nanowires on Active Cantilevers
,”
J. Vac. Sci. Technol. B
,
38
(
3
), p.
032806
.10.1116/1.5137901
13.
Garcia
,
R.
,
Knoll
,
A. W.
, and
Riedo
,
E.
,
2014
, “
Advanced Scanning Probe Lithography
,”
Nat. Nanotechnol.
,
9
(
8
), pp.
577
587
.10.1038/nnano.2014.157
14.
Garcia
,
R.
,
Martinez
,
R. V.
, and
Martinez
,
J.
,
2006
, “
Nano-Chemistry and Scanning Probe Nanolithographies
,”
Chem. Soc. Rev.
,
35
(
1
), pp.
29
38
.10.1039/B501599P
15.
Michalek
,
A.
,
Jwad
,
T.
,
Penchev
,
P.
,
See
,
T. L.
, and
Dimov
,
S.
,
2020
, “
Inline LIPSS Monitoring Method Employing Light Diffraction
,”
ASME J. Micro Nano-Manuf.
, 8(1), p. 011002.10.1115/1.4045681
16.
Lyuksyutov
,
S. F.
,
Paramonov
,
P. B.
,
Juhl
,
S.
, and
Vaia
,
R. A.
,
2003
, “
Amplitude-Modulated Electrostatic Nanolithography in Polymers Based on Atomic Force Microscopy
,”
Appl. Phys. Lett.
,
83
(
21
), pp.
4405
4407
.10.1063/1.1629787
17.
Moreno-Moreno, M., Ares, P., Moreno, C., Zamora, F., Gomez-Navarro, C., and Gomez-Herrero, J., 2019, “AFM Manipulation of Gold Nanowires to Build Electrical Circuits.”
Nano Lett.
, 19(8), pp.
5459
5468
.
18.
Promyoo
,
R.
,
El-Mounayri
,
H.
,
Agarwal
,
M.
,
Karingula
,
V. K.
, and
Varahramyan
,
K.
,
2016
, “
Tip-Based Nanomanufacturing of Nanofluidics Using Atomic Force Microscopy
,”
ASME J. Micro Nano-Manuf.
, 4(4), p.
041003
.10.1115/1.4034608
19.
Zhou
,
H.
, and
Deng
,
J.
,
2020
, “
Vibration Assisted AFM-Based Nanomachining Under Elevated Temperatures Using Soft and Stiff Probes
,”
Procedia Manuf.
,
48
, pp.
508
513
.10.1016/j.promfg.2020.05.075
20.
Deng
,
J.
,
Zhang
,
L.
,
Dong
,
J.
, and
Cohen
,
P. H.
,
2016
, “
AFM-Based 3D Nanofabrication Using Ultrasonic Vibration Assisted Nanomachining
,”
J. Manuf. Process
,
24
, pp.
195
202
.10.1016/j.jmapro.2016.09.003
21.
Geng
,
Y.
,
Yan
,
Y.
,
Brousseau
,
E.
, and
Sun
,
Y.
,
2017
, “
AFM Tip-Based Mechanical Nanomachining of 3D Micro and Nano-Structures Via the Control of the Scratching Trajectory
,”
J. Mater. Process. Technol.
,
248
, pp.
236
248
.10.1016/j.jmatprotec.2017.05.028
22.
Geng
,
Y.
,
Yan
,
Y.
,
Wang
,
J.
,
Brousseau
,
E.
,
Sun
,
Y.
, and
Sun
,
Y.
,
2018
, “
Fabrication of Periodic Nanostructures Using AFM Tip-Based Nanomachining: Combining Groove and Material Pile-Up Topographies
,”
Engineering
,
4
(
6
), pp.
787
795
.10.1016/j.eng.2018.09.010
23.
Brousseau
,
E. B.
,
Thiery
,
S.
,
Arnal
,
B.
,
Nyiri
,
E.
,
Gibaru
,
O.
, and
Mayor
,
J. R.
,
2017
, “
A Computer-Aided Design and Manufacturing Implementation of the Atomic Force Microscope Tip-Based Nanomachining Process for Two-Dimensional Patterning
,”
ASME J. Micro Nano-Manuf.
, 5(4), p.
041003
.10.1115/1.4037694
24.
Liu
,
H.
,
Hoeppener
,
S.
, and
Schubert
,
U. S.
,
2016
, “
Reversible Nanopatterning on Polypyrrole Films by Atomic Force Microscope Electrochemical Lithography
,”
Adv. Funct. Mater.
,
26
(
4
), pp.
614
619
.10.1002/adfm.201503834
25.
Lyuksyutov
,
S. F.
,
Paramonov
,
P. B.
,
Dolog
,
I.
, and
Ralich
,
R. M.
,
2003
, “
Peculiarities of an Anomalous Electronic Current During Atomic Force Microscopy Assisted Nanolithography on n-Type Silicon
,”
Nanotechnology
,
14
(
7
), pp.
716
721
.10.1088/0957-4484/14/7/305
26.
Zhang
,
L.
,
Dong
,
J.
, and
Cohen
,
P. H.
,
2013
, “
Material-Insensitive Feature Depth Control and Machining Force Reduction by Ultrasonic Vibration in AFM-Based Nanomachining
,”
IEEE Trans. Nanotechnol.
,
12
(
5
), pp.
743
750
.10.1109/TNANO.2013.2273272
27.
Liu
,
X.
,
Howell
,
S. T.
,
Conde‐Rubio
,
A.
,
Boero
,
G.
, and
Brugger
,
J.
,
2020
, “
Thermomechanical Nanocutting of 2D Materials
,”
Adv. Mater.
,
32
(
31
), p.
2001232
.10.1002/adma.202001232
28.
Bark
,
H.
,
Kwon
,
S.
, and
Lee
,
C.
,
2016
, “
Bias-Assisted Atomic Force Microscope Nanolithography on NbS2thin Films Grown by Chemical Vapor Deposition
,”
J. Phys. Appl. Phys.
,
49
(
48
), p.
484001
.10.1088/0022-3727/49/48/484001
29.
Deng
,
J.
,
Dong
,
J.
, and
Cohen
,
P.
,
2018
, “
Rapid Fabrication and Characterization of SERS Substrates
,”
Procedia Manuf.
,
26
, pp.
580
586
.10.1016/j.promfg.2018.07.068
30.
Hu
,
H.
,
Kim
,
H. J.
, and
Somnath
,
S.
,
2017
, “
Tip-Based Nanofabrication for Scalable Manufacturing
,”
Micromachines
,
8
(
3
), p.
90
.10.3390/mi8030090
31.
Klehn
,
B.
, and
Kunze
,
U.
,
1999
, “
Nanolithography With an Atomic Force Microscope by Means of Vector-Scan Controlled Dynamic Plowing
,”
J. Appl. Phys.
,
85
(
7
), pp.
3897
3903
.10.1063/1.369761
32.
Fang
,
T.-H.
, and
Chang
,
W.-J.
,
2003
, “
Effects of AFM-Based Nanomachining Process on Aluminum Surface
,”
J. Phys. Chem. Solids
,
64
(
6
), pp.
913
918
.10.1016/S0022-3697(02)00436-5
33.
Deng
,
J.
,
Dong
,
J.
, and
Cohen
,
P. H.
,
2018
, “
Development and Characterization of Ultrasonic Vibration Assisted Nanomachining Process for Three-Dimensional Nanofabrication
,”
IEEE Trans. Nanotechnol.
,
17
(
3
), pp.
559
566
.10.1109/TNANO.2018.2826841
34.
Zhou
,
H.
,
Dmuchowski
,
C.
,
Ke
,
C.
, and
Deng
,
J.
,
2020
, “
External-Energy-Assisted Nanomachining With Low-Stiffness Atomic Force Microscopy Probes
,”
Manuf. Lett.
,
23
, pp.
1
4
.10.1016/j.mfglet.2019.11.001
35.
Holzner
,
F.
,
Paul
,
P.
,
Despont
,
M.
,
Cheong
,
L. L.
,
Hedrick
,
J.
,
Dürig
,
U.
, and
Knoll
,
A.
,
2013
, “
Thermal Probe Nanolithography: In-Situ Inspection, High-Speed, High-Resolution, 3D
,”
29th European Mask and Lithography Conference on International Society for Optics and Photonics
, Dresden, Germany, p.
888605
.10.1117/12.2032318
36.
Kaestner
,
M.
, and
Rangelow
,
I. W.
,
2020
, “
Scanning Probe Lithography on Calixarene Towards Single-Digit Nanometer Fabrication
,”
Int. J. Extreme Manuf.
,
2
(
3
), p.
032005
.10.1088/2631-7990/aba2d8
37.
Ding
,
L.
,
Li
,
Y.
,
Chu
,
H.
,
Li
,
C.
,
Yang
,
Z.
,
Zhou
,
W.
, and
Tang
,
Z. K.
,
2007
, “
High Speed Atomic Force Microscope Lithography Driven by Electrostatic Interaction
,”
Appl. Phys. Lett.
,
91
(
2
), p.
023121
.10.1063/1.2756138
38.
Ryu
,
Y. K.
, and
Garcia
,
R.
,
2017
, “
Advanced Oxidation Scanning Probe Lithography
,”
Nanotechnology
,
28
(
14
), p.
142003
.10.1088/1361-6528/aa5651
39.
Ovenden
,
C.
,
Farrer
,
I.
,
Skolnick
,
M. S.
, and
Heffernan
,
J.
,
2022
, “
Nanoscale Wafer Patterning Using SPM Induced Local Anodic Oxidation in InP Substrates
,”
Semicond. Sci. Technol.
,
37
(
2
), p.
025001
.10.1088/1361-6641/ac3f20
40.
Kayal
,
A.
,
G
,
H.
,
Bandopadhyay
,
K.
,
Kumar
,
A.
,
Silva
,
S.
, and
Mitra
,
J.
,
2021
, “
Controlling the Macroscopic Electrical Properties of Reduced Graphene Oxide by Nanoscale Writing of Electronic Channels
,”
Nanotechnology
,
32
(
17
), p.
175202
.10.1088/1361-6528/abda72
41.
Lyuksyutov
,
S. F.
,
Vaia
,
R. A.
,
Paramonov
,
P. B.
,
Juhl
,
S.
,
Waterhouse
,
L.
,
Ralich
,
R. M.
,
Sigalov
,
G.
, and
Sancaktar
,
E.
,
2003
, “
Electrostatic Nanolithography in Polymers Using Atomic Force Microscopy
,”
Nat. Mater.
,
2
(
7
), pp.
468
472
.10.1038/nmat926
42.
Krivoshapkina
,
Y.
,
Kaestner
,
M.
,
Lenk
,
C.
,
Lenk
,
S.
, and
Rangelow
,
I. W.
,
2017
, “
Low-Energy Electron Exposure of Ultrathin Polymer Films With Scanning Probe Lithography
,”
Microelectron. Eng.
,
177
, pp.
78
86
.10.1016/j.mee.2017.02.021
43.
Rangelow
,
I. W.
,
Ivanov
,
T.
,
Sarov
,
Y.
,
Schuh
,
A.
,
Frank
,
A.
,
Hartmann
,
H.
,
Zöllner
,
J.-P.
,
Olynick
,
D. L.
, and
Kalchenko
,
V.
,
2010
, “
Nanoprobe Maskless Lithography
,”
Alternative Lithography Technology II on International Society for Optics and Photonics
, San Jose, CA, p.
76370V
.10.1117/12.852265
44.
Lyuksyutov
,
S. F.
,
Paramonov
,
P. B.
,
Sharipov
,
R. A.
, and
Sigalov
,
G.
,
2004
, “Induced Nanoscale Deformations in Polymers Using Atomic Force Microscopy,”
Phys. Rev. B
, 70, p. 174110.10.1103/PhysRevB.70.174110
45.
Lenk
,
C.
,
Hofmann
,
M.
,
Lenk
,
S.
,
Kaestner
,
M.
,
Ivanov
,
T.
,
Krivoshapkina
,
Y.
,
Nechepurenko
,
D.
,
Volland
,
B.
,
Holz
,
M.
,
Ahmad
,
A.
,
Reum
,
A.
,
Wang
,
C.
,
Jones
,
M.
,
Durrani
,
Z.
, and
Rangelow
,
I. W.
,
2018
, “
Nanofabrication by Field-Emission Scanning Probe Lithography and Cryogenic Plasma Etching
,”
Microelectron. Eng.
,
192
, pp.
77
82
.10.1016/j.mee.2018.01.022
46.
Shim
,
W.
,
Braunschweig
,
A. B.
,
Liao
,
X.
,
Chai
,
J.
,
Lim
,
J. K.
,
Zheng
,
G.
, and
Mirkin
,
C. A.
,
2011
, “
Hard-Tip, Soft-Spring Lithography
,”
Nature
,
469
(
7331
), pp.
516
520
.10.1038/nature09697
47.
Paul
,
P. C.
,
Knoll
,
A. W.
,
Holzner
,
F.
,
Despont
,
M.
, and
Duerig
,
U.
,
2011
, “
Rapid Turnaround Scanning Probe Nanolithography
,”
Nanotechnology
,
22
(
27
), p.
275306
.10.1088/0957-4484/22/27/275306
48.
Yao
,
B.
,
Chen
,
C.
,
Du
,
Z.
,
Qian
,
Q.
, and
Pan
,
L.
,
2022
, “
Surfing Scanning Probe Nanolithography at Meters per Second
,”
Nano Lett.
,
22
(
6
), pp.
2187
2193
.10.1021/acs.nanolett.1c03705
You do not currently have access to this content.