Abstract

Graphite nanoplatelets (GNP) have recently become a commercially available alternative to graphene that has been widely studied as an additive to improve polymer properties. In particular, their use in improving the thermal properties of composites has many applications for the electronics industry. Expanded graphite (EG) is commonly used as starter material for the production of these nanoplatelets. However, the exfoliation of EG into nanoparticles typically involves the use of solvents, which are difficult to remove, and includes sonication which is time consuming and can cause defects in the platelets. Here, a commercially available, high-shear mixer is used to rapidly exfoliate EG in epoxy resin. The cured composites were measured for improvements in thermal conductivity and characterized using scanning electron microscopy and Raman spectroscopy.

References

1.
Fu
,
Y. X.
,
He
,
Z. X.
,
Mo
,
D.-C.
, and
Lu
,
S.-S.
,
2014
, “
Thermal Conductivity Enhancement With Different Fillers for Epoxy Resin Adhesives
,”
Appl. Therm. Eng.
,
66
(
1–2
), pp.
493
498
.10.1016/j.applthermaleng.2014.02.044
2.
Balandin
,
A. A.
,
2011
, “
Thermal Properties of Graphene and Nanostructured Carbon Materials
,”
Nat. Mater.
,
10
(
8
), pp.
569
581
.10.1038/nmat3064
3.
Hummers
,
W. S.
, and
Offeman
,
R. E.
,
1958
, “
Preparation of Graphitic Oxide
,”
J. Am. Chem. Soc.
,
80
(
6
), pp.
1339
1339
.10.1021/ja01539a017
4.
Teng
,
C.-C.
,
Ma
,
C.-C. M.
,
Lu
,
C.-H.
,
Yang
,
S.-Y.
,
Lee
,
S.-H.
,
Hsiao
,
M.-C
.,
2011
, “
Thermal Conductivity and Structure of Non-Covalent Functionalized Graphene/Epoxy Composites
,”
Carbon (New York)
,
49
(
15
), pp.
5107
5116
.10.1016/j.carbon.2011.06.095
5.
Jarosinski
,
L.
,
Rybak
,
A.
,
Gaska
,
K.
,
Kmita
,
G.
,
Porebska
,
R.
, and
Kapusta
,
C.
,
2017
, “
Enhanced Thermal Conductivity of Graphene Nanoplatelets Epoxy Composites
,”
Mater. Sci. Poland
,
35
(
2
), pp.
382
389
.10.1515/msp-2017-0028
6.
Debelak
,
B.
, and
Lafdi
,
K.
,
2007
, “
Use of Exfoliated Graphite Filler to Enhance Polymer Physical Properties
,”
Carbon (New York)
,
45
(
9
), pp.
1727
1734
.10.1016/j.carbon.2007.05.010
7.
Yu
,
A.
,
Ramesh
,
P.
,
Itkis
,
M. E.
,
Bekyarova
,
E.
, and
Haddon
,
R. C.
,
2007
, “
Graphite Nanoplatelet−Epoxy Composite Thermal Interface Materials
,”
J. Phys. Chem. C
,
111
(
21
), pp.
7565
7569
.10.1021/jp071761s
8.
Kim
,
H. S.
,
Kim
,
J. H.
,
Kim
,
W. Y.
,
Lee
,
H. S.
,
Kim
,
S. Y.
, and
Khil
,
M.-S.
,
2017
, “
Volume Control of Expanded Graphite Based on Inductively Coupled Plasma and Enhanced Thermal Conductivity of Epoxy Composite by Formation of the Filler Network
,”
Carbon (New York)
,
119
, pp.
40
46
.10.1016/j.carbon.2017.04.013
9.
Noh
,
Y. J.
,
Kim
,
H. S.
,
Ku
,
B. C.
,
Khil
,
M. S.
, and
Kim
,
S. Y.
,
2016
, “
Thermal Conductivity of Polymer Composites With Geometric Characteristics of Carbon Allotropes
,”
Adv. Eng. Mater.
,
18
(
7
), pp.
1127
1132
.10.1002/adem.201500451
10.
Ganguli
,
S.
,
Roy
,
A. K.
, and
Anderson
,
D. P.
,
2008
, “
Improved Thermal Conductivity for Chemically Functionalized Exfoliated Graphite/Epoxy Composites
,”
Carbon (New York)
,
46
(
5
), pp.
806
817
.10.1016/j.carbon.2008.02.008
11.
Wang
,
Z.
,
Qi
,
R.
,
Wang
,
J.
, and
Qi
,
S.
,
2015
, “
Thermal Conductivity Improvement of Epoxy Composite Filled With Expanded Graphite
,”
Ceram. Int.
,
41
(
10
), pp.
13541
13546
.10.1016/j.ceramint.2015.07.148
12.
Zhang
,
Y.
,
Choi
,
J. R.
, and
Park
,
S.-J.
,
2018
, “
Interlayer Polymerization in Amine-Terminated Macromolecular Chain-Grafted Expanded Graphite for Fabricating Highly Thermal Conductive and Physically Strong Thermoset Composites for Thermal Management Applications
,”
Compos. Part A
,
109
, pp.
498
506
.10.1016/j.compositesa.2018.04.001
13.
Yim
,
Y.-J.
, and
Park
,
S.-J.
,
2019
, “
Effect of Silver-Plated Expanded Graphite Addition on Thermal and Electrical Conductivities of Epoxy Composites in the Presence of Graphite and Copper
,”
Compos. Part A
,
123
, pp.
253
259
.10.1016/j.compositesa.2019.05.021
14.
Fu
,
Y.-X.
,
He
,
Z.-X.
,
Mo
,
D.-C.
, and
Lu
,
S.-S.
,
2014
, “
Thermal Conductivity Enhancement of Epoxy Adhesive Using Graphene Sheets as Additives
,”
Int. J. Therm. Sci.
,
86
(
86
), pp.
276
283
.10.1016/j.ijthermalsci.2014.07.011
15.
Esposito Corcione
,
C.
, and
Maffezzoli
,
A.
,
2013
, “
Transport Properties of Graphite/Epoxy Composites: Thermal, Permeability and Dielectric Characterization
,”
Polym. Test.
,
32
(
5
), pp.
880
888
.10.1016/j.polymertesting.2013.03.023
16.
Min
,
C.
,
Yu
,
D.
,
Cao
,
J.
,
Wang
,
G.
, and
Feng
,
L.
,
2013
, “
A Graphite Nanoplatelet/Epoxy Composite With High Dielectric Constant and High Thermal Conductivity
,”
Carbon (New York)
,
55
, pp.
116
125
.10.1016/j.carbon.2012.12.017
17.
Yasmin
,
A.
,
Luo
,
J.-J.
, and
Daniel
,
I. M.
,
2006
, “
Processing of Expanded Graphite Reinforced Polymer Nanocomposites
,”
Compos. Sci. Technol.
,
66
(
9
), pp.
1182
1189
.10.1016/j.compscitech.2005.10.014
18.
Paton
,
K. R.
,
Varrla
,
E.
,
Backes
,
C.
,
Smith
,
R. J.
,
Khan
,
U.
,
O'Neill
,
A.
,
Boland
,
C.
,
Lotya
,
M.
,
Istrate
,
O. M.
,
King
,
P.
,
Higgins
,
T.
,
Barwich
,
S.
,
May
,
P.
,
Puczkarski
,
P.
,
Ahmed
,
I.
,
Moebius
,
M.
,
Pettersson
,
H.
,
Long
,
E.
,
Coelho
,
J.
,
O'Brien
,
S. E.
,
McGuire
,
E. K.
,
Sanchez
,
B. M.
,
Duesberg
,
G. S.
,
McEvoy
,
N.
,
Pennycook
,
T. J.
,
Downing
,
C.
,
Crossley
,
A.
,
Nicolosi
,
V.
, and
Coleman
,
J. N.
,
2014
, “
Scalable Production of Large Quantities of Defect-Free Few-Layer Graphene by Shear Exfoliation in Liquids
,”
Nat. Mater.
,
13
(
6
), pp.
624
630
.10.1038/nmat3944
19.
Tuinstra
,
F.
, and
Koenig
,
J. L.
,
1970
, “
Raman Spectrum of Graphite
,”
J. Chem. Phys.
,
53
(
3
), pp.
1126
1130
.10.1063/1.1674108
20.
Ferrari
,
A. C.
, and
Robertson
,
J.
,
2000
, “
Interpretation of Raman Spectra of Disordered and Amorphous Carbon
,”
Phys. Rev. B
,
61
(
20
), pp.
14095
14107
.10.1103/PhysRevB.61.14095
21.
Kargar
,
F.
,
Barani
,
Z.
,
Salgado
,
R.
,
Debnath
,
B.
,
Lewis
,
J. S.
,
Aytan
,
E.
,
Lake
,
R. K.
, and
Balandin
,
A. A.
,
2018
, “
Thermal Percolation Threshold and Thermal Properties of Composites With High Loading of Graphene and Boron Nitride Fillers
,”
ACS Appl. Mater. Interfaces
,
10
(
43
), pp.
37555
37565
.10.1021/acsami.8b16616
You do not currently have access to this content.