Focused ion beam (FIB) instruments have recently started to be seen in applications to organic materials such as polymers and biological samples. FIB provides a novel tool for sectioning biological samples for electron microscope based imaging or microfabrication with environment friendly materials. The modeling of nano/micro scale geometry accurately sculptured by FIB milling is crucial for generating the milling plan and process control, and for computer simulation based prediction and visualization of the milled geometry. However, modeling of the milled geometry on compound materials, especially for high aspect ratio feature, is still difficult due to the complexity of target material, as well as multiple physical and chemical interactions involved. In this study, a comprehensive model of ion milling with organic targets is presented to address the challenges in using a simulation based approach. At each discrete point of the milled front, the depth is the dynamic result of aggregate interactions from neighboring areas, including physical sputtering and chemical reactions. Instead of determining the exact interactions, the parameters of the proposed model are estimated by studying a number of preliminary milling results followed by a nonlinear optimization model. This platform has been validated by milling different features on water ice in a cryogenic environment, and the simulation and experiment results show great consistency. With the proliferation of nanotechnology in biomedical and biomaterial domains, the proposed approach is expected to be a flexible tool for various applications involving novel and heterogeneous biological targets.

1.
Giannuzzi
,
L. A.
, and
Stevie
,
F. A.
, 2005,
Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques, and Practice
,
Springer
,
New York
.
2.
Volkert
,
C. A.
, and
Minor
,
A. M.
, 2007, “
Focused Ion Beam Microscopy and Micromachining
,”
MRS Bull.
0883-7694,
32
, pp.
389
395
.
3.
Fu
,
J.
,
Joshi
,
S. B.
, and
Catchmark
,
J. M.
, 2008, “
Sputtering Rate of Micromilling on Water Ice With Focused Ion Beam in a Cryogenic Environment
,”
J. Vac. Sci. Technol. A
0734-2101,
26
(
3
), pp.
422
429
.
4.
Moon
,
M. -W.
,
Lee
,
S. H.
,
Sun
,
J. -Y.
,
Oh
,
K. H.
,
Vaziri
,
A.
, and
Hutchinson
,
J. W.
, 2007, “
Wrinkled Hard Skins on Polymers Created by Focused Ion Beam
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
104
(
4
), pp.
1130
1133
.
5.
Heymann
,
J. A. W.
,
Hayles
,
M.
,
Gestmann
,
I.
,
Giannuzzi
,
L. A.
,
Lich
,
B.
, and
Subramaniam
,
S.
, 2006, “
Site-Specific 3D Imaging of Cells and Tissues With a Dual Beam Microscope
,”
J. Struct. Biol.
1047-8477,
155
(
1
), pp.
63
73
.
6.
Marko
,
M.
,
Hsieh
,
C.
,
Moberlychan
,
W.
,
Mannella
,
C. A.
, and
Frank
,
J.
, 2006, “
Focused Ion Beam Milling of Vitreous Water: Prospects for an Alternative to Cryo-Ultramicrotomy of Frozen-Hydrated Biological Samples
,”
J. Microsc.
0022-2720,
222
(
1
), pp.
42
47
.
7.
Heymann
,
J. A. W.
,
Shi
,
D.
,
Kim
,
S.
,
Bliss
,
D.
,
Milne
,
J. L. S.
, and
Subramaniam
,
S.
, 2009, “
3D Imaging of Mammalian Cells With Ion-Abrasion Scanning Electron Microscopy
,”
J. Struct. Biol.
1047-8477,
166
(
1
), pp.
1
7
.
8.
Bennett
,
A. E.
,
Narayan
,
K.
,
Shi
,
D.
,
Hartnell
,
L. M.
,
Gousset
,
K.
,
He
,
H.
,
Lowekamp
,
B. C.
,
Yoo
,
T. S.
,
Bliss
,
D.
,
Freed
,
E. O.
, and
Subramaniam
,
S.
, 2009, “
Ion-Abrasion Scanning Electron Microscopy Reveals Surface-Connected Tubular Conduits in HIV-Infected Macrophages
,”
PLoS Pathog.
,
5
(
9
), p.
e1000591
.
9.
Behrisch
,
R.
, and
Eckstein
,
W.
, 2007,
Sputtering by Particle Bombardment: Experiments and Computer Calculations From Threshold to MeV Energies
,
Springer
,
Berlin
.
10.
Adams
,
D. P.
,
Vasile
,
M. J.
,
Mayer
,
T. M.
, and
Hodges
,
V. C.
, 2003, “
Focused Ion Beam Milling of Diamond: Effects of H2O on Yield, Surface Morphology and Microstructure
,”
J. Vac. Sci. Technol. B
1071-1023,
21
(
6
), pp.
2334
2343
.
11.
Fu
,
J.
,
Joshi
,
S. B.
, and
Catchmark
,
J. M.
, 2008, “
A Study of Angular Effects in Focused Ion Beam Milling of Water Ice
,”
J. Micromech. Microeng.
0960-1317,
18
(
9
), pp.
095010
.
12.
Neureuther
,
A. R.
,
Liu
,
C. Y.
, and
Ting
,
C. H.
, 1979, “
Modeling Ion Milling
,”
J. Vac. Sci. Technol.
0022-5355,
16
(
6
), pp.
1767
1771
.
13.
Katardjiev
,
I. V.
, 1988, “
Simulation of Surface Evolution During Ion Bombardment
,”
J. Vac. Sci. Technol. A
0734-2101,
6
(
4
), pp.
2434
2442
.
14.
Katardjiev
,
I. V.
,
Carter
,
G.
,
Nobes
,
M. J.
,
Berg
,
S.
, and
Blom
,
H. O.
, 1994, “
Three-Dimensional Simulation of Surface Evolution During Growth and Erosion
,”
J. Vac. Sci. Technol. A
0734-2101,
12
(
1
), pp.
61
68
.
15.
Smith
,
R.
,
Wilde
,
S. J.
,
Carter
,
G.
,
Katardjiev
,
I. V.
, and
Nobes
,
M. J.
, 1987, “
The Simulation of Two-Dimensional Surface Erosion and Deposition Processes
,”
J. Vac. Sci. Technol. B
1071-1023,
5
(
2
), pp.
579
585
.
16.
Ishitani
,
T.
, and
Ohnishi
,
T.
, 1991, “
Modeling of Sputtering and Redeposition in Focused-Ion-Beam Trench Milling
,”
J. Vac. Sci. Technol. A
0734-2101,
9
(
6
), pp.
3084
3089
.
17.
Kim
,
H. -B.
,
Hobler
,
G.
,
Lugstein
,
A.
, and
Bertagnolli
,
E.
, 2007, “
Simulation of Ion Beam Induced Micro/Nano Fabrication
,”
J. Micromech. Microeng.
0960-1317,
17
(
6
), pp.
1178
1183
.
18.
Itoh
,
F.
,
Shimase
,
A.
, and
Haraichi
,
S.
, 1990, “
Two-Dimensional Profile Simulation of Focused Ion-Beam Milling of LSI
,”
J. Electrochem. Soc.
0013-4651,
137
(
3
), pp.
983
988
.
19.
Baragiola
,
R. A.
,
Vidal
,
R. A.
,
Svendsen
,
W.
,
Schou
,
J.
,
Shi
,
M.
,
Bahr
,
D. A.
, and
Atteberrry
,
C. L.
, 2003, “
Sputtering of Water Ice
,”
Nucl. Instrum. Methods Phys. Res. B
0168-583X,
209
, pp.
294
303
.
20.
Tseng
,
A. A.
, 2004, “
Recent Developments in Micromilling Using Focused Ion Beam Technology
,”
J. Micromech. Microeng.
0960-1317,
14
(
4
), pp.
R15
R34
.
You do not currently have access to this content.