Understanding physicochemical interactions during biokinetic regulation will be critical for the creation of relevant nanotechnology supporting cellular and molecular engineering. The impact of nanoscale influences in medicine and biology can be explored in detail through mathematical models as an in silico testbed. In a recent single-cell biomechanical analysis, the cytoskeletal strain response due to fluid-induced stresses was characterized (Wilson, Z. D., and Kohles, S. S., 2010, “Two-Dimensional Modeling of Nanomechanical Strains in Healthy and Diseased Single-Cells During Microfluidic Stress Applications,” J. Nanotech. Eng. Med., 1(2), p. 021005). Results described a microfluidic environment having controlled nanometer and piconewton resolution for explorations of multiscale mechanobiology. In the present study, we constructed a mathematical model exploring the nanoscale biomolecular response to that controlled microenvironment. We introduce mechanical stimuli and scaling factor terms as specific input values for regulating a cartilage molecule synthesis. Iterative model results for this initial multiscale static load application have identified a transition threshold load level from which the mechanical input causes a shift from a catabolic state to an anabolic state. Modeled molecule homeostatic levels appear to be dependent upon the mechanical stimulus as reflected experimentally. This work provides a specific mathematical framework from which to explore biokinetic regulation. Further incorporation of nanomechanical stresses and strains into biokinetic models will ultimately lead to refined mechanotransduction relationships at the cellular and molecular levels.

1.
Caplan
,
A. I.
, 1984, “
Cartilage
,”
Sci. Am.
0036-8733,
251
(
4
), pp.
84
94
.
2.
Roughley
,
P. J.
, and
Lee
,
E. R.
, 1994, “
Cartilage Proteoglycans: Structure and Potential Functions
,”
Microsc. Res. Tech.
1059-910X,
28
, pp.
385
397
.
3.
Buckwalter
,
J. A.
, and
Mankin
,
H. J.
, 1997, “
Articular Cartilage, Tissue Design and Chondrocytes Matrix Interactions
,”
Instr Course Lect
0065-6895,
47
, pp.
477
486
.
4.
Chambers
,
M. G.
,
Bayliss
,
M. T.
, and
Mason
,
R. M.
, 1997, “
Chondrocyte Cytokine and Growth Factor Expression in Murine Osteoarthritis
,”
Osteoarthritis Cartilage
1063-4584,
5
, pp.
301
308
.
5.
Moos
,
V.
,
Fickert
,
S.
,
Muller
,
B.
,
Weber
,
U.
, and
Sleper
,
J.
, 1999, “
Immunohistological Analysis of Cytokine Expression in Human Osteoarthritic and Healthy Cartilage
,”
J. Rheumatol.
0315-162X,
26
, pp.
870
879
.
6.
Lee
,
R. C.
,
Frank
,
E. H.
,
Grodzinsky
,
A. J.
, and
Roylance
,
D. K.
, 1981, “
Oscillatory Compressional Behavior of Articular Cartilage and Its Associated Electromechanical Properties
,”
ASME J. Biomech. Eng.
0148-0731,
103
, pp.
280
292
.
7.
Haupt
,
J. L.
,
Frisbie
,
D. D.
,
McIlwraith
,
C. W.
,
Robbins
,
P. D.
,
Ghivizzini
,
S.
,
Evans
,
C. H.
, and
Nixon
,
A. J.
, 2005, “
Dual Transduction of Insulin-Like Growth Factor-I and Interleukin-1 Receptor Antagonist Protein Controls Cartilage Degradation in an Osteoarthritic Culture Model
,”
J. Orthop. Res.
0736-0266,
23
, pp.
118
126
.
8.
Ramage
,
L.
,
Nuki
,
G.
, and
Salter
,
D. M.
, 2009, “
Signalling Cascades in Mechanotransduction: Cell–Matrix Interactions and Mechanical Loading
,”
Scand. J. Med. Sci. Sports
0905-7188,
19
, pp.
457
469
.
9.
Kiviranta
,
I.
,
Jurvelin
,
J.
,
Tammi
,
M.
,
Säämänen
,
A. M.
, and
Helminen
,
H. J.
, 1987, “
Weight Bearing Controls Glycosaminoglycan Concentration and Articular Cartilage Thickness in the Knee Joints of Young Beagle Dogs
,”
Arthritis Rheum.
0004-3591,
30
, pp.
801
809
.
10.
Helminen
,
H. J.
,
Kiviranta
,
I.
,
Säämänen
,
A. M.
,
Jurvelin
,
J. S.
,
Arokoski
,
J.
,
Oettmeier
,
R.
,
Abendroth
,
K.
,
Roth
,
A. J.
, and
Tammi
,
M. I.
, 1992,
Articular Cartilage and Osteoarthritis
,
K. E.
Kuettner
,
V. C.
Hascall
, and
R.
Schleyerbach
, eds.,
Raven
,
New York
, pp.
501
510
.
11.
Flannery
,
C. R.
,
Hughes
,
C. E.
,
Schumacher
,
B. L.
,
Tudor
,
D.
,
Aydelotte
,
M. B.
,
Kuettner
,
K. E.
, and
Caterson
,
B.
, 1999, “
Articular Cartilage Superficial Zone Protein (SZP) is Homologous to Megakaryocyte Stimulating Factor Precursor and Is a Multifunctional Proteoglycan With Potential Growth-Promoting, Cytoprotective, and Lubricating Properties in Cartilage Metabolism
,”
Biochem. Biophys. Res. Commun.
0006-291X,
254
, pp.
535
541
.
12.
Roughley
,
P. J.
, 2006, “
The Structure and Function of Cartilage Proteoglycans
,”
Eur. Cells Mater
1473-2262,
12
, pp.
92
101
.
13.
Woo
,
S. L.
,
Akeson
,
W. H.
, and
Jemmott
,
G. F.
, 1976, “
Measurements of Nonhomogeneous, Directional Mechanical Properties of Articular Cartilage in Tension
,”
J. Biomech.
0021-9290,
9
, pp.
785
791
.
14.
Roth
,
V.
, and
Mow
,
V. C.
, 1980, “
The Intrinsic Tensile Behavior of the Matrix of Bovine Articular Cartilage and Its Variation With Age
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
62
, pp.
1102
1117
.
15.
Ateshian
,
G. A.
, and
Mow
,
V. C.
, 2005,
Basic Orthopaedic Biomechanics and Mechano-Biology
,
V. C.
Mow
and
R.
Huiskes
, eds.,
Lippincott Williams & Wilkins
,
Philadelphia
, pp.
447
494
.
16.
Quinn
,
T. M.
,
Grodzinsky
,
A. J.
,
Hunziker
,
E. B.
, and
Sandy
,
J. D.
, 1998, “
Effects of Injurious Compression on Matrix Turnover Around Individual Cells in Calf Articular Cartilage Expants
,”
J. Orthop. Res.
0736-0266,
16
, pp.
490
499
.
17.
Loening
,
A. M.
,
James
,
I. E.
,
Levenston
,
M. E.
,
Badger
,
A. M.
,
Frank
,
E. H.
,
Kurz
,
B.
,
Nuttall
,
M. E.
,
Hung
,
H. H.
,
Blake
,
S. M.
,
Grodzinsky
,
A. J.
, and
Lark
,
M. W.
, 2000, “
Injurious Mechanical Compression of Bovine Articular Cartilage Induces Chondrocyte Apoptosis
,”
Arch. Biochem. Biophys.
0003-9861,
381
, pp.
205
212
.
18.
Setton
,
L. A.
,
Mow
,
V. C.
,
Muller
,
F. J.
,
Pita
,
J. C.
, and
Howell
,
D. S.
, 1994, “
Mechanical Properties of Canine Articular Cartilage Are Significantly Altered Following Transaction of the Anterior Cruciate Ligament
,”
J. Orthop. Res.
0736-0266,
12
, pp.
451
463
.
19.
Jeffrey
,
J. E.
,
Gregory
,
D. W.
, and
Aspden
,
R. M.
, 1995, “
Matrix Damage and Chondrocyte Viability Following a Single Impact Load on Articular Cartilage
,”
Arch. Biochem. Biophys.
0003-9861,
322
, pp.
87
96
.
20.
Kurz
,
B.
,
Jin
,
M.
,
Patwari
,
P.
,
Cheng
,
D. M.
,
Lark
,
M. W.
, and
Grodzinsky
,
A. J.
, 2001, “
Biosynthetic Response and Mechanical Properties of Articular Cartilage After Injurious Compression
,”
J. Orthop. Res.
0736-0266,
19
, pp.
1140
1146
.
21.
Patwari
,
P.
,
Cook
,
M. N.
,
DiMicco
,
M. A.
,
Blake
,
S. M.
,
James
,
I. E.
,
Kumar
,
S.
,
Cole
,
A. A.
,
Lark
,
M. W.
, and
Gordzinsky
,
A. J.
, 2003, “
Proteoglycan Degradation After Injurious Compression of Bovine and Human Articular Cartilage In Vitro: Interaction With Exogeneous Cytokines
,”
Arthritis Rheum.
0004-3591,
48
, pp.
1292
1301
.
22.
Buschmann
,
M. D.
,
Gluzband
,
Y. A.
,
Grodzinsky
,
A. J.
, and
Hunziker
,
E. B.
, 1995, “
Mechanical Compression Modulates Matrix Biosynthesis in Chondrocyte/Agarose Culture
,”
J. Cell. Sci.
0021-9533,
108
, pp.
1497
1508
.
23.
Lee
,
D. A.
, and
Bader
,
D. L.
, 1997, “
Compressive Strains at Physiological Frequencies Influence the Metabolism of Chondrocytes Seeded in Agarose
,”
J. Orthop. Res.
0736-0266,
15
, pp.
181
188
.
24.
Lee
,
J. H.
,
Fitzgerald
,
J. B.
,
DiMicco
,
M. A.
, and
Grodzinsky
,
A. J.
, 2005, “
Mechanical Injury of Cartilage Explants Causes Specific Time-Dependent Changes in Chondrocyte Gene Expression
,”
Arthritis Rheum.
0004-3591,
52
, pp.
2386
2395
.
25.
Kisiday
,
J. D.
,
Jin
,
M.
,
DiMicco
,
M. A.
,
Kurz
,
B.
, and
Grodzinsky
,
A. J.
, 2004, “
Effects of Dynamic Compressive Loading on Chondrocyte Biosynthesis in Self-Assembling Peptide Scaffolds
,”
J. Biomech.
0021-9290,
37
, pp.
595
604
.
26.
Chowdhury
,
T. T.
,
Bader
,
D. L.
,
Shelton
,
J. C.
, and
Lee
,
D. A.
, 2003, “
Temporal Regulation of Chondrocyte Metabolism in Agarose Constructs Subjected to Dynamic Compression
,”
Arch. Biochem. Biophys.
0003-9861,
417
, pp.
105
111
.
27.
Chowdhury
,
T. T.
,
Bader
,
D. L.
, and
Lee
,
D. A.
, 2006, “
Anti-Inflammatory Effects of IL-4 and Dynamic Compression in IL-1β Simulated Chondrocytes
,”
Biochem. Biophys. Res. Commun.
0006-291X,
339
, pp.
241
247
.
28.
Ragan
,
P. M.
,
Chin
,
V. I.
,
Hung
,
H. H.
,
Masuda
,
K.
,
Thonar
,
E. J.
,
Arner
,
E. C.
,
Grodzinsky
,
A. J.
, and
Sandy
,
J. D.
, 2000, “
Chondrocyte Extracellular Matrix Synthesis and Turnover Are Influenced by Static Compression in a New Alginate Disk Culture System
,”
Arch. Biochem. Biophys.
0003-9861,
383
, pp.
256
264
.
29.
Saha
,
A. K.
,
Mazumdar
,
J. N.
, and
Kohles
,
S. S.
, 2004, “
Prediction of Growth Factor Effects on Engineered Cartilage Composition Using Deterministic and Stochastic Modeling
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
871
879
.
30.
Saha
,
A. K.
,
Mazumdar
,
J. N.
, and
Kohles
,
S. S.
, 2005, “
Dynamic Matrix Composition in Engineered Cartilage With Stochastic Supplementation of Growth Factors
,”
Australas. Phys. Eng. Sci. Med.
0158-9938,
28
, pp.
97
104
.
31.
Saha
,
A. K.
, and
Kohles
,
S. S.
, 2010, “
Cell-Matrix Modeling of Anabolic and Catabolic Dynamics on Cartilage Biomolecule Regulation
,”
Comput. Math. Methods Med.
, in press.
32.
Kohles
,
S. S.
,
Nève
,
N.
,
Zimmerman
,
J. D.
, and
Tretheway
,
D. C.
, 2009, “
Stress Analysis of Microfluidic Environments Designed for Isolated Biological Cell Investigations
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
12
), p.
121006
.
33.
Wilson
,
Z. D.
, and
Kohles
,
S. S.
, 2010, “
Two-Dimensional Modeling of Nanomechanical Strains in Healthy and Diseased Single-Cells During Microfluidic Stress Applications
,”
J. Nanotech. Eng. Med.
,
1
(
2
), p.
021005
.
34.
Li
,
J.
,
Fu
,
X.
,
Sun
,
X.
,
Sun
,
T.
, and
Sheng
,
Z.
, 2002, “
The Interaction Between Epidermal Growth Factor and Matrix Metalloproteinases Induces the Development of Sweat Glands in Human Fetal Skin
,”
J. Surg. Res.
0022-4804,
106
(
2
), pp.
258
263
.
35.
Kim
,
W.
,
Tretheway
,
D. C.
, and
Kohles
,
S. S.
, 2009, “
An Inverse Method for Predicting Tissue-Level Mechanics From Cellular Mechanical Input
,”
J. Biomech.
0021-9290,
42
(
3
), pp.
395
399
.
36.
Wilson
,
C. G.
,
Bonassar
,
L. J.
, and
Kohles
,
S. S.
, 2002, “
Modeling the Dynamic Composition of Engineered Cartilage
,”
Arch. Biochem. Biophys.
0003-9861,
408
, pp.
246
254
.
37.
Freed
,
L. E.
,
Hollander
,
A. P.
,
Martin
,
I.
,
Barry
,
J. R.
,
Langer
,
R.
, and
Vunjak-Novakovic
,
G.
, 1998, “
Chondrogenesis in a Cell-Polymer-Bioreactor System
,”
Exp. Cell Res.
0014-4827,
240
, pp.
58
65
.
38.
Vunjak-Novakovic
,
G.
,
Obradovic
,
B.
,
Martin
,
I.
,
Bursac
,
P. M.
,
Langer
,
R.
, and
Freed
,
L. E.
, 1998, “
Dynamic Cell Seeding of Polymer Scaffolds for Cartilage Tissue Engineering
,”
Biotechnol. Prog.
8756-7938,
14
, pp.
193
202
.
39.
Urban
,
J. P.
, 1994, “
The Chondrocyte: A Cell Under Pressure
,”
Br. J. Rheumatol.
0263-7103,
33
, pp.
901
908
.
40.
Martinac
,
B.
, 2004, “
Mechanosensitive Ion Channels: Molecules of Mechanotransduction
,”
J. Cell. Sci.
0021-9533,
117
, pp.
2449
2460
.
41.
Ingber
,
D.
, 1991, “
Integrins as Mechanochemical Transducers
,”
Curr. Opin. Cell Biol.
0955-0674,
3
, pp.
841
848
.
42.
Wright
,
M.
,
Jobanputra
,
P.
,
Bavington
,
C.
,
Salter
,
D. M.
, and
Nuki
,
G.
, 1996, “
Effects of Intermittent Pressure-Induced Strain on the Electrophysiology of Cultured Human Chondrocytes: Evidence for the Presence of Stretch-Activated Membrane Ion Channels
,”
Clin. Sci.
0323-5084,
90
, pp.
61
71
.
43.
Kim
,
Y. -J.
,
Grodzinsky
,
A. J.
, and
Plaas
,
A. H. K.
, 1996, “
Compression of Cartilage Results in Differential Effects on Biosynthetic Pathways for Aggrecan Link Protein, and Hyaluronan
,”
Arch. Biochem. Biophys.
0003-9861,
328
, pp.
331
340
.
44.
Lee
,
H. S.
,
Millward-Sadler
,
S. J.
,
Wright
,
M. O.
,
Nuki
,
G.
, and
Salter
,
D. M.
, 2000, “
Integrin and Mechanosensitive Ion Channel-Dependent Tyrosine Phosphorylation of Focal Adhesion Proteins and β-Catenin in Human Articular Chondrocytes After Mechanical Stimulation
,”
J. Bone Miner. Res.
0884-0431,
15
, pp.
1501
1509
.
45.
Millward-Sadler
,
S. J.
,
Wright
,
M. O.
,
Davies
,
L. W.
,
Nuki
,
G.
, and
Salter
,
D. M.
, 2000, “
Mechanotransduction Via Integrins and Interleukin-4 Results in Altered Aggrecan and Matrix Metalloproteinase 3 Gene Expression in Normal, But Not Osteoarthritic, Human Articular Chondrocytes
,”
Arthritis Rheum.
0004-3591,
43
, pp.
2091
2099
.
46.
Wu
,
Q. Q.
, and
Chen
,
Q.
, 2000, “
Mechanoregulation of Chondrocyte Proliferation, Maturation, and Hypertrophy: Ion-Channel Dependent Transduction of Matrix Deformation Signals
,”
Exp. Cell Res.
0014-4827,
256
, pp.
383
391
.
47.
Fanning
,
P. J.
,
Emkey
,
G.
,
Smith
,
R. J.
,
Grodzinsky
,
A. J.
,
Szasz
,
N.
, and
Trippel
,
S. B.
, 2003, “
Mechanical Regulation of Mitogen-Activated Protein Kinase Signaling in Articular Cartilage
,”
J. Biol. Chem.
0021-9258,
278
, pp.
50940
50948
.
48.
Murata
,
M.
,
Bonassar
,
L. J.
,
Wright
,
M.
,
Mankin
,
H. J.
, and
Towle
,
C. A.
, 2003, “
A Role for the Interleukin-1 Receptor in the Pathway Linking Static Mechanical Compression to Decreased Proteoglycan Synthesis in Surface Articular Cartilage
,”
Arch. Biochem. Biophys.
0003-9861,
413
, pp.
229
235
.
49.
Szafranski
,
J. D.
,
Grodzinsky
,
A. J.
,
Burger
,
E.
,
Gaschen
,
V.
,
Hung
,
H. H.
, and
Hunziker
,
E. B.
, 2004, “
Chondrocyte Mechanotransduction: Effects of Compression on Deformation of Intracellular Organelles and Relevance to Cellular Biosynthesis
,”
Osteoarthritis Cartilage
1063-4584,
12
, pp.
937
946
.
50.
Fitzgerald
,
J. B.
,
Jin
,
M.
,
Dean
,
D.
,
Wood
,
D. J.
,
Zheng
,
M. H.
, and
Grodzinsky
,
A. J.
, 2004, “
Mechanical Compression of Cartilage Explants Induces Multiple Time Dependent Gene Expression Patterns and Involves Intracellular Calcium and Cyclic AMP
,”
J. Biol. Chem.
0021-9258,
279
, pp.
19502
19511
.
51.
Vincent
,
T. L.
,
Hermansson
,
M. A.
,
Hansen
,
U. N.
,
Amis
,
A. A.
, and
Saklatvala
,
J.
, 2004, “
Basic Fibroblast Growth Factor Mediates Transduction of Mechanical Signals When Articular Cartilage Is Loaded
,”
Arthritis Rheum.
0004-3591,
50
, pp.
526
533
.
52.
Perkins
,
G. L.
,
Derfoul
,
A.
,
Ast
,
A.
, and
Hall
,
D. J.
, 2005, “
An Inhibitor of the Stretch-Activated Cation Receptor Exerts a Potent Effect on Chondrocyte Phenotype
,”
Differentiation
0301-4681,
73
, pp.
199
211
.
53.
Fitzgerald
,
J. B.
,
Jim
,
M.
, and
Grodzinsky
,
A. J.
, 2006, “
Shear and Compression Differentially Regulate Clusters of Functionally Related Temporal Transcription Patterns in Cartilage Tissue
,”
J. Biol. Chem.
0021-9258,
281
, pp.
24095
24103
.
54.
Mouw
,
J. K.
,
Imler
,
S. M.
, and
Levenston
,
M. E.
, 2007, “
Ion-Channel Regulation of Chondrocyte Matrix Synthesis in 3D Culture Under Static and Dynamic Compression
,”
Biomech. Model. Mechanobiol.
1617-7959,
6
, pp.
33
41
.
55.
Fitzgerald
,
J. B.
,
Jin
,
M.
,
Chai
,
D. H.
,
Siparsky
,
P.
,
Fanning
,
P.
,
Grodzinsky
,
A. J.
, 2007, “
Shear- and Compression-Induced Chondrocyte Transcription Requires MAPK Activation in Cartilage Explants
,”
J. Biol. Chem.
0021-9258,
283
(
11
), pp.
6735
6743
.
56.
Niehoff
,
A.
,
Offermann
,
M.
,
Dargel
,
J.
,
Schmidt
,
A.
,
Brüggemann
,
G. P.
, and
Bloch
,
W.
, 2008, “
Dynamic and Static Mechanical Compression Affects Akt Phosphorylation in Porcine Patellofemoral Joint Cartilage
,”
J. Orthop. Res.
0736-0266,
26
, pp.
616
623
.
57.
Vincent
,
T. L.
,
McLean
,
C. J.
,
Full
,
L. E.
,
Peston
,
D.
, and
Saklatvala
,
J.
, 2007, “
FGF-2 Is Bound to Perlecan in the Pericellular Matrix of Articular Cartilage, Where It Acts as a Chondrocyte Mechanotransducer
,”
Osteoarthritis Cartilage
1063-4584,
15
, pp.
752
763
.
58.
Grodzinsky
,
A. J.
,
Levenston
,
M. E.
,
Jin
,
M.
, and
Frank
,
E. H.
, 2000, “
Cartilage Tissue Remodeling in Response to Mechanical Forces
,”
Annu. Rev. Biomed. Eng.
1523-9829,
2
, pp.
691
713
.
59.
Sah
,
R. L.
,
Kim
,
Y. J.
,
Doong
,
J. H.
,
Grodzinsky
,
A. J.
,
Plaas
,
A. H. K.
, and
Sandy
,
J. D.
, 1989, “
Biosynthetic Response of Cartilage Explants to Dynamic Compression
,”
J. Orthop. Res.
0736-0266,
7
, pp.
619
636
.
60.
Guilak
,
F.
,
Meyer
,
F. C.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
, 1994, “
The Effects of Matrix Compression on Proteoglycan Metabolism in Articular Cartilage Explants
,”
Osteoarthritis Cartilage
1063-4584,
2
, pp.
91
101
.
You do not currently have access to this content.