This paper deals with the dynamic analysis of carbon nanotube with surface deviation along its axis. The type of carbon nanotube used in this analysis is a single-walled carbon nanotube that is doubly clamped at a source and a drain and this type of nanotube is used to represent a single mode resonator. In previous studies, experimentally measured resonance frequencies of carbon nanotubes have been used along with classical beam theory for straight beams. However, it is found that these carbon nanotubes are not straight, and that they have some significant surface deviation associated with them. The resonant frequency of the doubly clamped single walled carbon nanotube (SWCNT) with deviation (waviness) has been investigated. The results showed the sensitivity of the single-walled carbon nanotubes having different waviness to different masses (attached at the center of a doubly clamped SWCNT) and different lengths. The sensitivity of resonant frequency shifts to tube length and waviness has been demonstrated. The vibration signature exhibits superharmonic and subharmonic responses with different levels of mass. The vibration spectra of CNT with varying attached mass from 105fg to 103fg show dense signature near peak of excitation. It is found that with the increase in mass attached to CNT with 60 nm length, the peak excitation appears in the vibration signature in chaotic nature with reduced vibration amplitude.

1.
Harris
,
P. J. F.
, 1999,
Carbon Nanotubes and Related Structures
,
Cambridge University Press
,
Cambridge, UK
.
2.
Dresselhaus
,
M. S.
,
Dresselhaus
,
G.
, and
Avouris
,
P.
, 2001,
Carbon Nanotubes
,
Springer
,
Heidelberg
.
3.
Cleland
,
A. N.
, 2003,
Foundation of Nanomechanics
,
Springer
,
New York
.
4.
Pelesko
,
J. A.
, and
Bernstein
,
D. H.
, 2003,
Modeling MEMS and NEMS
,
Chapman and Hall
,
London
/
CRC
,
Boca Raton, FL
.
5.
Schwab
,
K.
, 2002, “
Spring Constant and Damping Constant Tuning of Nanomechanical Resonators Using a Single-Electron Transistor
,”
Appl. Phys. Lett.
0003-6951,
80
, pp.
1276
1278
.
6.
Li
,
C.
, and
Chou
,
W. -K.
, 2004, “
Mass Detection Using Carbon Nanotube-Based Nanomechanical Resonators
,”
Appl. Phys. Lett.
0003-6951,
84
, pp.
5246
5248
.
7.
Wu
,
W.
,
Palaniapan
,
M.
, and
Wong
,
W. -K.
, 2008, “
Multiwall Carbon Nanotube Resonator for Ultra-Sensitive Mass Detection
,”
Electron. Lett.
0013-5194,
44
(
18
), p.
1060
.
8.
Lee
,
I.
,
Liu
,
X.
,
Zhou
,
C.
, and
Kosko
,
B.
, 2006, “
Noise-Enhanced Detection of Subthreshold Signals With Carbon Nanotubes
,”
IEEE Trans. Nanotechnol.
1536-125X,
5
(
6
), pp.
613
627
.
9.
Harik
,
V. M.
, 2002, “
Mechanics of Carbon-Nanotubes: Applicability of the Continuum-Beam Model
,”
Comput. Mater. Sci.
0927-0256,
24
, pp.
328
342
.
10.
Qian
,
D.
,
Wagner
,
G. J.
, and
Liu
,
W. K.
, 2002, “
Mechanics of Carbon Nanotubes
,”
Appl. Mech. Rev.
0003-6900,
55
(
6
), pp.
495
533
.
11.
Mir
,
M.
,
Hosseini
,
A.
, and
Majzoobi
,
G. H.
, 2008, “
A Numerical Study of Vibrational Properties of Single-Walled Carbon Nanotubes
,”
Comput. Mater. Sci.
0927-0256,
43
, pp.
540
548
.
12.
Gibson
,
R. F.
,
Emmanuel
,
O. A.
, and
Yuan
,
F. W.
, 2007, “
Vibrations of Carbon Nanotubes and Their Composites: A Review
,”
Compos. Sci. Technol.
0266-3538,
67
(
1
), pp.
1
28
.
13.
Qian
,
D.
,
Dickey
,
E. C.
,
Andrews
,
R.
, and
Rantell
,
T.
, 2000, “
Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites
,”
Appl. Phys. Lett.
0003-6951,
76
(
20
), pp.
2868
2870
.
14.
Wang
,
Z. L.
,
Poncharal
,
P.
, and
Heer
,
W. A.
, 2000, “
Nano Measurements of Individual Carbon Nanotubes by In Situ TEM
,”
Pure Appl. Chem.
0033-4545,
72
(
1–2
), pp.
209
219
.
15.
Fisher
,
F. T.
,
Bradshaw
,
R. D.
, and
Brinson
,
L. C.
, 2003, “
Fiber Waviness in Nanotube-Reinforced Polymer Composites—I. Modulus Predictions Using Effective Nanotube Properties
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1689
1703
.
16.
Bradshaw
,
R. D.
,
Fisher
,
F. T.
, and
Brinson
,
L. C.
, 2003, “
Fiber Waviness in Nanotube-Reinforced Polymer Composites—II. Modeling via Numerical Approximation of the Dilute Strain Concentration Tensor
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1705
1722
.
17.
Anumandla
,
V.
, and
Gibson
,
R. F.
, 2006, “
A Comprehensive Closed Form Micromechanics Model for Estimating the Elastic Modulus of Nanotube-Reinforced Composite
,”
Composites, Part A
1359-835X,
37
(
12
), pp.
2178
2185
.
18.
Berhan
,
L.
,
Yi
,
Y. B.
, and
Sastry
,
A. M.
, 2004, “
Effect of Nanorope Waviness on the Effective Moduli of Nanotube Sheets
,”
J. Appl. Phys.
0021-8979,
95
(
9
), pp.
5027
5034
.
19.
Mayoof
,
F. N.
, and
Hawwa
,
M. A.
, 2009, “
Chaotic Behavior of a Curved Carbon Nanotube Under Harmonic Excitation
,”
Chaos, Solitons Fractals
0960-0779,
42
, pp.
1860
1867
.
20.
Joshi
,
A. Y.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
, 2008, “
Vibration Analysis of Pre-Stressed Single Walled Carbon Nanotube Based Mass Sensor
,”
International Journal of Electrospun Nanofibers and Applications
,
2
(
3
), pp.
161
170
.
21.
Joshi
,
A. Y.
,
Harsha
,
S. P.
, and
Sharma
,
S. C.
, 2010, “
Vibration Signature Analysis of Single Walled Carbon Nanotube Based Nano Mechanical Sensors
,”
Physica E (Amsterdam)
1386-9477,
42
(
8
), pp.
2115
2123
.
22.
Joshi
,
A. Y.
,
Harsha
,
S. P.
, and
Sharma
,
S. C.
, 2010, “
Vibration Response Analysis of Doubly Clamped Single Walled Wavy Carbon Nanotube Based Nano Mechanical Sensors
,”
Journal of Nanotechnology in Engineering & Medicine
, in press.
23.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
, 1961,
Theory of Elastic Stability
,
McGraw-Hill
,
New York
.
24.
Rao
,
S. S.
, 1995,
Mechanical Vibrations
,
Addison-Wesley
,
Reading, MA
, Chap. 8.
25.
Saether
,
E.
,
Frankland
,
S. J. V.
, and
Pipes
,
R. B.
, 2003, “
Transverse Mechanical Properties of Single-Walled Carbon Nanotube Crystals. Part I. Determination of Elastic Moduli
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1543
1550
.
26.
Vodenitcharova
,
T.
, and
Zhang
,
L. C.
, 2003, “
Effective Wall Thickness of a Single-Walled Carbon Nanotube
,”
Phys. Rev. B
0556-2805,
68
, p.
165401
.
27.
Maninder
,
S. H.
, and
Gibson
,
R. F.
, 2009, “
Numerical Simulation of Modal Vibration Response of Wavy Carbon Nanotubes
,”
J. Compos. Mater.
0021-9983,
43
(
5
), pp.
501
515
.
You do not currently have access to this content.