Scaffolds based on chitosan/polygalacturonic acid (ChiPgA) complex containing montmorillonite (MMT) clay modified with 5-aminovaleric acid were prepared using freeze-drying technique. The MMT clay was introduced to improve mechanical properties of the scaffold. The microstructure of the scaffolds containing the modified MMT clay was influenced by the incorporation of nanoclays. The MTT assay also indicated that the number of osteoblast cells in ChiPgA scaffolds containing the modified clay was comparable to ChiPgA scaffolds containing hydroxyapatite known for its osteoconductive properties. Overall, the ChiPgA composite scaffolds were found to be biocompatible. This was also indicated by the scanning electron microscopy images of the ChiPgA composite scaffolds seeded with human osteoblast cells. Photoacoustic–Fourier transform infrared (PA-FTIR) experiments on the ChiPgA composite scaffolds indicated formation of a polyelectrolyte complex between chitosan and polygalacturonic acid. PA-FTIR studies also showed that the MMT clay modified with 5-aminovaleric acid was successfully incorporated in the ChiPgA based scaffolds. Swelling studies on ChiPgA composite scaffolds showed the swelling ability of the scaffolds that indicated that the cells and the nutrients would be able to reach the interior parts of the scaffolds. In addition to this, the ChiPgA scaffolds exhibited porosity greater than 90% as appropriate for scaffolds used in tissue engineering studies. High porosity facilitates the nutrient transport throughout the scaffold and also plays a role in the development of adequate vasculature throughout the scaffold. Compressive mechanical tests on the scaffolds showed that the ChiPgA composite scaffolds had compressive elastic moduli in the range of 4–6 MPa and appear to be affected by the high porosity of the scaffolds. Thus, the ChiPgA composite scaffolds containing MMT clay modified with 5-aminovaleric acid are biocompatible. Also, the ChiPgA scaffolds containing the modified MMT clay appears to satisfy some of the basic requirements of scaffolds for tissue engineering applications.

1.
Langer
,
R.
, and
Vacanti
,
J. P.
, 1993, “
Tissue Engineering
,”
Science
0036-8075,
260
(
5110
), pp.
920
926
.
2.
Murugan
,
R.
, and
Ramakrishna
,
S.
, 2005, “
Development of Nanocomposites for Bone Grafting
,”
Compos. Sci. Technol.
0266-3538,
65
(
15–16
), pp.
2385
2406
.
3.
Dorozhkin
,
S. V.
, 2007, “
Calcium Orthophosphates
,”
J. Mater. Sci.
0022-2461,
42
(
4
), pp.
1061
1095
.
4.
Salgado
,
A. J.
,
Coutinho
,
O. P.
, and
Reis
,
R. L.
, 2004, “
Bone Tissue Engineering: State of the Art and Future Trends
,”
Macromol. Biosci.
1616-5187,
4
(
8
), pp.
743
765
.
5.
Goldberg
,
M.
,
Langer
,
R.
, and
Jia
,
X. Q.
, 2007, “
Nanostructured Materials for Applications in Drug Delivery and Tissue Engineering
,”
J. Biomater. Sci., Polym. Ed.
0920-5063,
18
(
3
), pp.
241
268
.
6.
Barnes
,
C. P.
,
Sell
,
S. A.
,
Boland
,
E. D.
,
Simpson
,
D. G.
, and
Bowlin
,
G. L.
, 2007, “
Nanofiber Technology: Designing the Next Generation of Tissue Engineering Scaffolds
,”
Adv. Drug Delivery Rev.
0169-409X,
59
(
14
), pp.
1413
1433
.
7.
Pirraco
,
R. P.
,
Marques
,
A. P.
, and
Reis
,
R. L.
, 2010, “
Cell Interactions in Bone Tissue Engineering
,”
J. Cell. Mol. Med.
,
14
(
1–2
), pp.
93
102
.
8.
Langer
,
R.
, 1997, “
Tissue Engineering: A New Field and Its Challenges
,”
Pharmaceutical Research
,
14
(
7
), pp.
840
841
. 0002-7820
9.
Mano
,
J. F.
,
Silva
,
G. A.
,
Azevedo
,
H. S.
,
Malafaya
,
P. B.
,
Sousa
,
R. A.
,
Silva
,
S. S.
,
Boesel
,
L. F.
,
Oliveira
,
J. M.
,
Santos
,
T. C.
,
Marques
,
A. P.
,
Neves
,
N. M.
, and
Reis
,
R. L.
, 2007, “
Natural Origin Biodegradable Systems in Tissue Engineering and Regenerative Medicine: Present Status and Some Moving Trends
,”
J. R. Soc., Interface
1742-5689,
4
(
17
), pp.
999
1030
.
10.
Zhang
,
Y.
,
Venugopal
,
J. R.
,
El-Turki
,
A.
,
Ramakrishna
,
S.
,
Su
,
B.
, and
Lim
,
C. T.
, 2008, “
Electrospun Biomimetic Nanocomposite Nanofibers of Hydroxyapatite/Chitosan for Bone Tissue Engineering
,”
Biomaterials
0142-9612,
29
(
32
), pp.
4314
4322
.
11.
Kong
,
L.
,
Gao
,
Y.
,
Lu
,
G.
,
Gong
,
Y.
,
Zhao
,
N.
, and
Zhang
,
X.
, 2006, “
A Study on the Bioactivity of Chitosan/Nano-Hydroxyapatite Composite Scaffolds for Bone Tissue Engineering
,”
Eur. Polym. J.
0014-3057,
42
(
12
), pp.
3171
3179
.
12.
Kikuchi
,
M.
,
Matsumoto
,
H. N.
,
Yamada
,
T.
,
Koyama
,
Y.
,
Takakuda
,
K.
, and
Tanaka
,
J.
, 2004, “
Glutaraldehyde Cross-Linked Hydroxyapatite/Collagen Self-Organized Nanocomposites
,”
Biomaterials
0142-9612,
25
(
1
), pp.
63
69
.
13.
Kim
,
H. W.
,
Gu
,
H. J.
, and
Lee
,
H. H.
, 2007, “
Microspheres of Collagen-Apatite Nanocomposites With Osteogenic Potential for Tissue Engineering
,”
Tissue Eng.
1076-3279,
13
(
5
), pp.
965
973
.
14.
Svensson
,
A.
,
Nicklasson
,
E.
,
Harrah
,
T.
,
Panilaitis
,
B.
,
Kaplan
,
D. L.
,
Brittberg
,
M.
, and
Gatenholm
,
P.
, 2005, “
Bacterial Cellulose as a Potential Scaffold for Tissue Engineering of Cartilage
,”
Biomaterials
0142-9612,
26
(
4
), pp.
419
431
.
15.
Müller
,
F. A.
,
Müller
,
L.
,
Hofmann
,
I.
,
Greil
,
P.
,
Wenzel
,
M. M.
, and
Staudenmaier
,
R.
, 2006, “
Cellulose-Based Scaffold Materials for Cartilage Tissue Engineering
,”
Biomaterials
0142-9612,
27
(
21
), pp.
3955
3963
.
16.
Santos
,
M. I.
,
Fuchs
,
S.
,
Gomes
,
M. E.
,
Unger
,
R. E.
,
Reis
,
R. L.
, and
Kirkpatrick
,
C. J.
, 2007, “
Response of Micro- and Macrovascular Endothelial Cells to Starch-Based Fiber Meshes for Bone Tissue Engineering
,”
Biomaterials
0142-9612,
28
(
2
), pp.
240
248
.
17.
Sundaram
,
J.
,
Durance
,
T. D.
, and
Wang
,
R.
, 2008, “
Porous Scaffold of Gelatin-Starch With Nanohydroxyapatite Composite Processed via Novel Microwave Vacuum Drying
,”
Acta Biomater.
1742-7061,
4
(
4
), pp.
932
942
.
18.
Hofmann
,
S.
,
Hagenmüller
,
H.
,
Koch
,
A. M.
,
Müller
,
R.
,
Vunjak-Novakovic
,
G.
,
Kaplan
,
D. L.
,
Merkle
,
H. P.
, and
Meinel
,
L.
, 2007, “
Control of in Vitro Tissue-Engineered Bone-Like Structures Using Human Mesenchymal Stem Cells and Porous Silk Scaffolds
,”
Biomaterials
0142-9612,
28
(
6
), pp.
1152
1162
.
19.
Mandal
,
B. B.
, and
Kundu
,
S. C.
, 2009, “
Non-Mulberry Silk Gland Fibroin Protein 3-D Scaffold for Enhanced Differentiation of Human Mesenchymal Stem Cells Into Osteocytes
,”
Acta Biomater.
1742-7061,
5
(
7
), pp.
2579
2590
.
20.
Liu
,
H.
,
Slamovich
,
E. B.
, and
Webster
,
T. J.
, 2006, “
Less Harmful Acidic Degradation of Poly(Lactic-Co-Glycolic Acid) Bone Tissue Engineering Scaffolds Through Titania Nanoparticle Addition
,”
Int. J. Nanomedicine
,
1
(
4
), pp.
541
545
.
21.
Nejati
,
E.
,
Mirzadeh
,
H.
, and
Zandi
,
M.
, 2008, “
Synthesis and Characterization of Nano-Hydroxyapatite Rods/Poly(L-Lactide Acid) Composite Scaffolds for bone Tissue Engineering
,”
Composites, Part A
1359-835X,
39
(
10
), pp.
1589
1596
.
22.
Serrano
,
M. C.
,
Pagani
,
R.
,
Vallet-Regí
,
M.
,
Peña
,
J.
,
Rámila
,
A.
,
Izquierdo
,
I.
, and
Portolés
,
M. T.
, 2004, “
In Vitro Biocompatibility Assessment of Poly(ε-Caprolactone) Films Using L929 Mouse Fibroblasts
,”
Biomaterials
0142-9612,
25
(
25
), pp.
5603
5611
.
23.
Nukavarapu
,
S. P.
,
Kumbar
,
S. G.
,
Brown
,
J. L.
,
Krogman
,
N. R.
,
Weikel
,
A. L.
,
Hindenlang
,
M. D.
,
Nair
,
L. S.
,
Allcock
,
H. R.
, and
Laurencin
,
C. T.
, 2008, “
Polyphosphazene/Nano-Hydroxyapatite Composite Microsphere Scaffolds for Bone Tissue Engineering
,”
Biomacromolecules
1525-7797,
9
(
7
), pp.
1818
1825
.
24.
Mistry
,
A. S.
,
Cheng
,
S. H.
,
Yeh
,
T.
,
Christenson
,
E.
,
Jansen
,
J. A.
, and
Mikos
,
A. G.
, 2009, “
Fabrication and In Vitro Degradation of Porous Fumarate-Based Polymer/Alumoxane Nanocomposite Scaffolds for Bone Tissue Engineering
,”
J. Biomed. Mater. Res. Part A
1549-3296,
89A
(
1
), pp.
68
79
.
25.
Christenson
,
E. M.
,
Anseth
,
K. S.
,
Van den Beucken
,
L.
,
Chan
,
C. K.
,
Ercan
,
B.
,
Jansen
,
J. A.
,
Laurencin
,
C. T.
,
Li
,
W. J.
,
Murugan
,
R.
,
Nair
,
L. S.
,
Ramakrishna
,
S.
,
Tuan
,
R. S.
,
Webster
,
T. J.
, and
Mikos
,
A. G.
, 2007, “
Nanobiomaterial Applications in Orthopedics
,”
J. Orthop. Res.
0736-0266,
25
(
1
), pp.
11
22
.
26.
Stevens
,
M. M.
, and
George
,
J. H.
, 2005, “
Exploring and Engineering the Cell Surface Interface
,”
Science
0036-8075,
310
(
5751
), pp.
1135
1138
.
27.
Okada
,
A.
,
Kawasumi
,
M.
,
Usuki
,
A.
,
Kojima
,
Y.
,
Kurauchi
,
T.
, and
Kamigaito
,
O.
, 1990, “
Synthesis and Properties of Nylon-6/Clay Hybrids
,”
Polymer Based Molecular Composites, MRS Symposium Proceedings
,
D. W.
Schaefer
and
J. E.
Mark
, eds., Vol.
171
, pp.
45
50
.
28.
Giannelis
,
E. P.
, 1996, “
Polymer Layered Silicate Nanocomposites
,”
Adv. Mater.
0935-9648,
8
(
1
), pp.
29
35
.
29.
Chen
,
G. X.
,
Hao
,
G. J.
,
Guo
,
T. Y.
,
Song
,
M. D.
, and
Zhang
,
B. H.
, 2002, “
Structure and Mechanical Properties of Poly(3-Hydroxybutyrateco-3-Hydroxyvalerate) (PHBV)/Clay Nanocomposites
,”
J. Mater. Sci. Lett.
0261-8028,
21
, pp.
1587
1589
.
30.
Lim
,
S. T.
,
Lee
,
C. H.
,
Choi
,
H. J.
, and
Jhon
,
M. S.
, 2003, “
Solidlike Transition of Melt-Intercalated Biodegradable Polymer/Clay Nanocomposites
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
41
(
17
), pp.
2052
2061
.
31.
Ma
,
C. -C. M.
,
Kuo
,
C. -T.
,
Kuan
,
H. -C.
, and
Chiang
,
C. -L.
, 2003, “
Effects of Swelling Agents on the Crystallization Behavior and Mechanical Properties of Polyamide 6/Clay Nanocomposites
,”
J. Appl. Polym. Sci.
0021-8995,
88
(
7
), pp.
1686
1693
.
32.
Park
,
H. -M.
,
Lee
,
W. -K.
,
Park
,
C. -Y.
,
Cho
,
W. -J.
, and
Ha
,
C. -S.
, 2003, “
Environmentally Friendly Polymer Hybrids Part I Mechanical, Thermal, and Barrier Properties of Thermoplastic Starch/Clay Nanocomposites
,”
J. Mater. Sci.
0022-2461,
38
, pp.
909
915
.
33.
Yano
,
K.
,
Usuki
,
A.
,
Okada
,
A.
,
Kurauchi
,
T.
, and
Kamigaito
,
O.
, 1993, “
Synthesis and Properties of Polyimide-Clay Hybrid
,”
J. Polym. Sci., Part A: Polym. Chem.
0887-624X,
31
(
10
), pp.
2493
2498
.
34.
Messersmith
,
P. B.
, and
Giannelis
,
E. P.
, 1995, “
Synthesis and Barrier Properties of Poly(ε-Caprolactone)-Layered Silicate Nanocomposites
,”
J. Polym. Sci., Part A: Polym. Chem.
0887-624X,
33
(
7
), pp.
1047
1057
.
35.
Gilman
,
J. W.
,
Jackson
,
C. L.
,
Morgan
,
A. B.
, and
Harris
,
R.
, Jr.
, 2000, “
Flammability Properties of Polymer–Layered-Silicate Nanocomposites. Polypropylene and Polystyrene Nanocomposites
,”
Chem. Mater.
0897-4756,
12
, pp.
1866
1873
.
36.
Gilman
,
J. W.
, 1999, “
Flammability and Thermal Stability Studies of Polymer Layered-Silicate (Clay) Nanocomposites
,”
Appl. Clay Sci.
0169-1317,
15
(
1–2
), pp.
31
49
.
37.
Sinha Ray
,
S.
, and
Okamoto
,
M.
, 2003, “
Polymer/Layered Silicate Nanocomposites: A Review From Preparation to Processing
,”
Prog. Polym. Sci.
0079-6700,
28
(
11
), pp.
1539
1641
.
38.
Sikdar
,
D.
,
Pradhan
,
S. M.
,
Katti
,
D. R.
,
Katti
,
K. S.
, and
Mohanty
,
B.
, 2008, “
Altered Phase Model for Polymer Clay Nanocomposites
,”
Langmuir
0743-7463,
24
(
10
), pp.
5599
5607
.
39.
Sikdar
,
D.
,
Katti
,
D. R.
, and
Katti
,
K. S.
, 2008, “
The Role of Interfacial Interactions on the Crystallinity and Nanomechanical Properties of Clay-Polymer Nanocomposites: A Molecular Dynamics Study
,”
J. Appl. Polym. Sci.
0021-8995,
107
(
5
), pp.
3137
3148
.
40.
Sikdar
,
D.
,
Katti
,
D.
,
Katti
,
K.
, and
Mohanty
,
B.
, 2009, “
Influence of Backbone Chain Length and Functional Groups of Organic Modifiers on Crystallinity and Nanomechanical Properties of Intercalated Clay-Polycaprolactam Nanocomposites
,”
Int. J. Nanotechnol.
1475-7435,
6
(
5/6
), pp.
468
492
.
41.
Katti
,
D. R.
,
Ghosh
,
P.
,
Schmidt
,
S.
, and
Katti
,
K. S.
, 2005, “
Mechanical Properties of the Sodium Montmorillonite Interlayer Intercalated With Amino Acids
,”
Biomacromolecules
1525-7797,
6
(
6
), pp.
3276
3282
.
42.
Forni
,
F.
,
Iannuccelli
,
V.
,
Coppi
,
G.
, and
Bernabei
,
M. T.
, 1989, “
Effect of Montmorillonite on Drug Release From Polymeric Matrices
,”
Arch. Pharm. (Weinheim)
0365-6233,
322
(
11
), pp.
789
793
.
43.
Lee
,
W. -F.
, and
Fu
,
Y. -T.
, 2003, “
Effect of Montmorillonite on the Swelling Behavior and Drug-Release Behavior of Nanocomposite Hydrogels
,”
J. Appl. Polym. Sci.
0021-8995,
89
(
13
), pp.
3652
3660
.
44.
Dong
,
Y.
, and
Feng
,
S. -S.
, 2005, “
Poly(D,L-Lactide-Co-Glycolide)/Montmorillonite Nanoparticles for Oral Delivery of Anticancer Drugs
,”
Biomaterials
0142-9612,
26
(
30
), pp.
6068
6076
.
45.
Lin
,
F. -H.
,
Chen
,
C. -H.
,
Cheng
,
W. T. K.
, and
Kuo
,
T. -F.
, 2006, “
Modified Montmorillonite as Vector for Gene Delivery
,”
Biomaterials
0142-9612,
27
(
17
), pp.
3333
3338
.
46.
Viseras
,
C.
,
Aguzzi
,
C.
,
Cerezo
,
P.
, and
Lopez-Galindo
,
A.
, 2007, “
Uses of Clay Minerals in Semisolid Health Care and Therapeutic Products
,”
Appl. Clay Sci.
0169-1317,
36
(
1–3
), pp.
37
50
.
47.
Takahashi
,
T.
,
Yamada
,
Y.
,
Kataoka
,
K.
, and
Nagasaki
,
Y.
, 2005, “
Preparation of a Novel PEG-Clay Hybrid as a DDS Material: Dispersion Stability and Sustained Release Profiles
,”
J. Controlled Release
0168-3659,
107
(
3
), pp.
408
416
.
48.
des Rieux
,
A.
,
Fievez
,
V.
,
Garinot
,
M.
,
Schneider
,
Y. -J.
, and
Préat
,
V.
, 2006, “
Nanoparticles as Potential Oral Delivery Systems of Proteins and Vaccines: A Mechanistic Approach
,”
J. Controlled Release
0168-3659,
116
(
1
), pp.
1
27
.
49.
Sun
,
B.
,
Ranganathan
,
B.
, and
Feng
,
S. -S.
, 2008, “
Multifunctional Poly(D,L-Lactide-Co-Glycolide)/Montmorillonite (PLGA/MMT) Nanoparticles Decorated by Trastuzumab for Targeted Chemotherapy of Breast Cancer
,”
Biomaterials
0142-9612,
29
(
4
), pp.
475
486
.
50.
Wang
,
X.
,
Du
,
Y.
, and
Luo
,
J.
, 2008, “
Biopolymer/Montmorillonite Nanocomposite: Preparation, Drug-Controlled Release Property and Cytotoxicity
,”
Nanotechnology
0957-4484,
19
(
6
), p.
065707
.
51.
Depan
,
D.
,
Kumar
,
A. P.
, and
Singh
,
R. P.
, 2009, “
Cell Proliferation and Controlled Drug Release Studies of Nanohybrids Based on Chitosan-G-Lactic Acid and Montmorillonite
,”
Acta Biomater.
1742-7061,
5
(
1
), pp.
93
100
.
52.
Carretero
,
M. I.
, 2002, “
Clay Minerals and Their Beneficial Effects Upon Human Health. A Review
,”
Appl. Clay Sci.
0169-1317,
21
(
3–4
), pp.
155
163
.
53.
Katti
,
K. S.
,
Ambre
,
A. H.
,
Peterka
,
N.
, and
Katti
,
D. R.
, 2010, “
Use of Unnatural Amino Acids for Design of Novel Organomodified Clays as Components of Nanocomposite Biomaterials
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
368
, pp.
1963
1980
.
54.
Lin
,
K. -F.
,
Hsu
,
C. -Y.
,
Huang
,
T. -S.
,
Chiu
,
W. -Y.
,
Lee
,
Y. -H.
, and
Young
,
T. -H.
, 2005, “
A Novel Method to Prepare Chitosan/Montmorillonite Nanocomposites
,”
J. Appl. Polym. Sci.
0021-8995,
98
(
5
), pp.
2042
2047
.
55.
Marras
,
S. I.
,
Kladi
,
K. P.
,
Tsivintzelis
,
I.
,
Zuburtikudis
,
I.
, and
Panayiotou
,
C.
, 2008, “
Biodegradable Polymer Nanocomposites: The Role of Nanoclays on the Thermomechanical Characteristics and the Electrospun Fibrous Structure
,”
Acta Biomater.
1742-7061,
4
(
3
), pp.
756
765
.
56.
Zheng
,
J. P.
,
Wang
,
C. Z.
,
Wang
,
X. X.
,
Wang
,
H. Y.
,
Zhuang
,
H.
, and
Yao
,
K. D.
, 2007, “
Preparation of Biomimetic Three-Dimensional Gelatin/Montmorillonite-Chitosan Scaffold for Tissue Engineering
,”
React. Funct. Polym.
1381-5148,
67
(
9
), pp.
780
788
.
57.
Katti
,
K. S.
,
Katti
,
D. R.
, and
Dash
,
R.
, 2008, “
Synthesis and Characterization of a Novel Chitosan/Montmorillonite/Hydroxyapatite Nanocomposite for Bone Tissue Engineering
,”
Biomed. Mater.
,
3
(
3
), p.
034122
.
58.
Krayukhina
,
M. A.
,
Samoilova
,
N. A.
, and
Yamskov
,
I. A.
, 2008, “
Polyelectrolyte Complexes of Chitosan: Formation, Properties and Applications
,”
Russ. Chem. Rev.
0036-021X,
77
(
9
), p.
799
.
59.
Verma
,
D.
,
Katti
,
K. S.
, and
Katti
,
D. R.
, 2008, “
Effect of Biopolymers on Structure of Hydroxyapatite and Interfacial Interactions in Biomimetically Synthesized Hydroxyapatite/Biopolymer Nanocomposites
,”
Ann. Biomed. Eng.
0090-6964,
36
(
6
), pp.
1024
1032
.
60.
Verma
,
D.
,
Katti
,
K. S.
, and
Katti
,
D. R.
, 2009, “
Polyelectrolyte-Complex Nanostructured Fibrous Scaffolds for Tissue Engineering
,”
Mater. Sci. Eng., C
0928-4931,
29
(
7
), pp.
2079
2084
.
61.
Verma
,
D.
,
Katti
,
K. S.
, and
Katti
,
D. R.
, 2010, “
Osteoblast Adhesion, Proliferation and Growth on Polyelectrolyte Complex-Hydroxyapatite Nanocomposites
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
368
(
1917
), p.
2083
2097
.
62.
Verma
,
D.
,
Katti
,
K. S.
,
Katti
,
D. R.
, and
Mohanty
,
B.
, 2008, “
Mechanical Response and Multilevel Structure of Biomimetic Hydroxyapatite/Polygalacturonic/Chitosan Nanocomposites
,”
Mater. Sci. Eng., C
0928-4931,
28
, pp.
399
405
.
63.
Gibson
,
L. J.
, and
Ashby
,
M. F.
, 1999,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
New York
.
You do not currently have access to this content.