In this paper, we present the synthesis of nanostructures of magnetite nanoparticles (NPs) with ciprofloxacin and kanamycin antibiotics, based on self-assembling principle. The nanostructures were prepared in crystallite size, ranging 8–16 nm, in one pot addition setup and further washing steps, using only iron precursors and above-mentioned antibiotics as stabilizers. Nanostructures were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis methods, Fourier transform infrared (FTIR) and ultraviolet (UV) spectroscopy methods. It was found that they have well-shaped spherical form and are homogeneous in size. The quantitative analysis of nanostructured antibiotics was performed by atom absorbance spectroscopy (AAS) as well as on the basis of Lambert–Beer law. Prepared nanostructures were tested on Staphylococcus aureus and Pseudomonas aeruginosa. Obtained results demonstrated that these nanostructures are able to improve antimicrobial properties and decrease the minimal inhibitory concentration (MIC) of pristine kanamycin and ciprofloxacin antibiotics.

References

1.
Davies
,
J.
, and
Davies
,
D.
,
2010
, “
Origins and Evolution of Antibiotic Resistance
,”
Microbiol. Mol. Biol. Rev.
,
74
(
3
), pp.
417
433
.
2.
Chifiriuc
,
M. C.
,
Grumezescu
,
A. M.
,
Andronescu
,
E.
,
Ficai
,
A.
,
Cotar
,
A. I.
,
Grumezescu
,
V.
,
Bezirtzoglou
,
E.
,
Lazar
,
V.
, and
Radulescu
,
R.
,
2013
, “
Water Dispersible Magnetite Nanoparticles Influence the Efficacy of Antibiotics Against Planktonic and Biofilm Embedded Enterococcus Faecalis Cells
,”
Anaerobe
,
22
, pp.
14
19
.
3.
Cotar
,
A. I.
,
Grumezescu
,
A. M.
,
Andronescu
,
E.
,
Voicu
,
G.
,
Ficai
,
A.
,
Ou
,
K.-L.
,
Huang
,
K.-S.
, and
Chifiriuc
,
M. C.
,
2013
, “
Nanotechnological Solution for Improving the Antibiotic Efficiency Against Biofilms Developed by Gram-Negative Bacterial Strains
,”
Lett. Appl. NanoBioSci.
,
2
(1), pp.
97
104
.
4.
Grumezescu
,
A. M.
,
Andronescu
,
E.
,
Ficai
,
A.
,
Ficai
,
D.
,
Huang
,
K. S.
,
Gheorghe
,
I.
, and
Chifiriuc
,
M. C.
,
2012
, “
Water Soluble Magnetic Biocomposite With Potential Applications for the Antimicrobial Therapy
,”
Biointerface Res. Appl. Chem.
,
2
(
6
), pp.
469
475
.
5.
Grumezescu
,
A. M.
,
Andronescu
,
E.
,
Holban
,
A. M.
,
Ficai
,
A.
,
Ficai
,
D.
,
Voicu
,
G.
,
Grumezescu
,
V.
,
Balaure
,
P. C.
, and
Chifiriuc
,
C. M.
,
2013
, “
Water Dispersible Cross-Linked Magnetic Chitosan Beads for Increasing the Antimicrobial Efficiency of Aminoglycoside Antibiotics
,”
Int. J. Pharm.
,
454
(
1
), pp.
233
240
.
6.
Jacoby
,
G. A.
,
2005
, “
Mechanisms of Resistance to Quinolones
,”
Clin. Infect. Dis.
,
41
(Suppl. 2), pp.
S120
S126
.
7.
Smith
,
C. A.
, and
Baker
,
E. N.
,
2002
, “
Aminoglycoside Antibiotic Resistance by Enzymatic Deactivation
,”
Curr. Drug Targets: Infect. Disord.
,
2
(
2
), pp.
143
160
.
8.
Redgrave
,
L. S.
,
Sutton
,
S. B.
,
Webber
,
M. A.
, and
Piddock
,
L. J. V.
,
2014
, “
Fluoroquinolone Resistance: Mechanisms, Impact on Bacteria and Role in Evolutionary Success
,”
Trends Microbiol.
,
22
(
8
), pp.
438
445
.
9.
Trevor
,
A. J.
,
Katzung
,
B. G.
, and
Masters
,
S. B.
,
2010
, “
Chemotherapeutic Drugs
,”
Pharmacology Examination & Board Review
, 9th ed., Part VIII, Chaps. 45 and 46, McGraw-Hill, New York.
10.
Linder
,
J. A.
,
Huang
,
E. S.
,
Steinman
,
M. A.
,
Gonzales
,
R.
, and
Stafford
,
R. S.
,
2005
, “
Fluoroquinolone Prescribing in the United States: 1995 to 2002
,”
Am. J. Med.
,
118
(
3
), pp.
259
268
.
11.
Brown
,
S. A.
,
1996
, “
Fluoroquinolones in Animal Health
,”
J. Vet. Pharmacol. Ther.
,
19
(
1
), pp.
1
14
.
12.
Rai
,
M.
, and
Kon
,
K.
,
2015
,
Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases
, 1st ed.,
Academic Press
, Amsterdam.
13.
Gianchandani
,
Y.
, and
Meng
,
E.
,
2012
, “
Emerging Micro- and Nanotechnologies at the Interface of Engineering, Science, and Medicine for the Development of Novel Drug Delivery Devices and Systems
,”
Adv. Drug Delivery
,
64
(
14
), pp.
1545
1546
.
14.
Massart
,
R.
,
1981
, “
Preparation of Aqueous Magnetic Liquids in Alkaline and Acidic Media
,”
IEEE Trans. Magn.
,
17
(
2
), pp.
1247
1248
.
15.
Mayrhofer
,
S.
,
Domig
,
K. J.
,
Mair
,
C.
,
Zitz
,
U.
,
Huys
,
G.
, and
Kneifel
,
W.
,
2008
, “
Comparison of Broth Microdilution, Etest, and Agar Disk Diffusion Methods for Antimicrobial Susceptibility Testing of Lactobacillus Acidophilus Group Members
,”
Appl. Environ. Microbiol.
,
74
(12), pp.
3745
3748
.
16.
Jorgensen
,
J. H.
, and
Lee
,
J. C.
,
1975
, “
Microdilution Technique for Antimicrobial Susceptibility Testing of Haemophilus Influenza
,”
Antimicrob. Agents Chemother.
,
8
(
5
), pp.
610
611
.
17.
Erriu
,
M.
,
Genta
,
G.
,
Tuveri
,
E.
,
Orrù
,
G.
,
Barbato
,
G.
, and
Levi
,
R.
,
2012
, “
Microtiter Spectrophotometric Biofilm Production Assay Analyzed With Metrological Methods and Uncertainty Evaluation
,”
Measurement
,
45
(
5
), pp.
1083
1088
.
18.
Attwood
,
D.
, and
Florence
,
A. T.
,
2012
,
Physical Pharmacy
, 2nd ed.,
Pharmaceutical Press
, London, pp.
43
51
.
19.
Belikov
,
V. G.
,
2007
,
Pharmaceutical Chemistry
, 3rd ed.,
Medpress-Inform
,
Moscow, Russia
, pp.
375
376
; 494–496.
20.
Sahoo
,
S.
,
Chakraborti
,
C. K.
, and
Behera
,
P. K.
,
2012
, “
Spectroscopic Investigations of a Ciprofloxacin/HPMC Mucoadhesive Suspension
,”
Int. J. Appl. Pharm.
,
4
(
3
), pp.
1
8
.
21.
Blanchaert
,
B.
,
Jorge
,
E. P.
,
Jankovics
,
P.
,
Adams
,
E.
, and
Schepdael
,
A. V.
,
2013
, “
Assay of Kanamycin A by HPLC With Direct UV Detection
,”
Chromatographia
,
76
(
21
), pp.
1505
1512
.
22.
Cazedey
,
E. C. L.
, and
Salgado
,
H. R. N.
,
2012
, “
Spectrophotometric Determination of Ciprofloxacin Hydrochloride in Ophthalmic Solution
,”
Adv. Anal. Chem.
,
2
(
6
), pp.
74
79
.
23.
Cornelis
,
P.
, and
Dingeman
,
J.
,
2013
, “
Pseudomonas Aeruginosa Adapts Its Iron Uptake Strategies in Function of the Type of Infections
,”
Front. Cell. Infect. Microbiol.
,
3
(
75
), pp.
1
7
.
24.
Hasanova
,
U. A.
,
Ramazanov
,
M. A.
,
Maharramov
,
A. M.
,
Eyvazova
,
Q. M.
,
Agamaliyev
,
Z. A.
,
Parfyonova
,
Y. V.
,
Hajiyeva
,
S. F.
,
Hajiyeva
,
F. V.
, and
Veliyeva
,
S. B.
,
2015
, “
Nano-Coupling of Cephalosporin Antibiotic With Fe3O4 Nanoparticles: Trojan Horse Approach in Antimicrobial Chemotherapy of Infections Caused by Klebsiella spp.
,”
J. Biomater. Nanobiotechnol.
,
6
(03), pp.
225
235
.
You do not currently have access to this content.