Abstract

Nonlinear Lamb waves including second harmonic and acoustic-radiation-induced quasi-static components (QSC) have a potential for accurately evaluating early-stage fatigue damage. Most previous studies focus on second-harmonic-based techniques that require phase velocity matching and are hard to isolate interferences from ultrasonic testing systems. The aforementioned requirement and deficiency limit applications of the second-harmonic-based techniques. In this study, a QSC-based technique of low-frequency Lamb waves is proposed for early-stage fatigue damage evaluation of metal plates, which does not need to require phase velocity matching and can remove interferences from ultrasonic testing systems. Both in simulations and in experiments, the primary Lamb wave mode at a low frequency that meets approximate group velocity matching with the generated QSC is selected. In finite element simulations, different levels of material nonlinearities by changing the third-order elastic constants are used to characterize levels of fatigue damage. Numerical results show that the magnitude of the generated QSC pulse increases with the levels of fatigue damage. Early-stage fatigue damage in aluminum plates with different fatigue cycles is further experimentally evaluated. The generated QSC pulse is extracted from received time-domain signals using the phase-inversion technique and low-pass digital filtering processing. The curve of the normalized relative acoustic nonlinearity parameter versus the cyclic loading number is obtained. Numerical simulations and experimental results show that the early-stage fatigue damage in aluminum plates can effectively be evaluated using the QSC generated by low-frequency Lamb waves.

References

1.
Deng
,
M.
, and
Pei
,
J.
,
2007
, “
Assessment of Accumulated Fatigue Damage in Solid Plates Using Nonlinear Lamb Wave Approach
,”
Appl. Phys. Lett.
,
90
(
12
), pp.
273
277
.
2.
Pruell
,
C.
,
Kim
,
J.-Y.
,
Qu
,
J.
, and
Jacobs
,
L. J.
,
2009
, “
Evaluation of Fatigue Damage Using Nonlinear Guided Waves
,”
Smart Mater. Struct.
,
18
(
3
), p.
035003
.
3.
Rauter
,
N.
,
Lammering
,
R.
, and
Kühnrich
,
T.
,
2016
, “
On the Detection of Fatigue Damage in Composites by Use of Second Harmonic Guided Waves
,”
Compos. Struct.
,
152
, pp.
247
258
.
4.
Zhu
,
W.
,
Xiang
,
Y.
,
Liu
,
C. J.
,
Deng
,
M.
,
Ma
,
C.
, and
Xuan
,
F.-Z.
,
2018
, “
Fatigue Damage Evaluation Using Nonlinear Lamb Waves With Quasi Phase-Velocity Matching at Low Frequency
,”
Materials
,
11
(
10
), p.
1920
.
5.
Pruell
,
C.
,
Kim
,
J.-Y.
,
Qu
,
J.
, and
Jacobs
,
L. J.
,
2007
, “
Evaluation of Plasticity Driven Material Damage Using Lamb Waves
,”
Appl. Phys. Lett.
,
91
(
23
), p.
231911
.
6.
Pruell
,
C.
,
Kim
,
J.-Y.
,
Qu
,
J.
, and
Jacobs
,
L. J.
,
2009
, “
A Nonlinear-Guided Wave Technique for Evaluating Plasticity-Driven Material Damage in a Metal Plate
,”
NDT E Int.
,
42
(
3
), pp.
199
203
.
7.
Kanda
,
K.
, and
Lin
,
S.
,
2020
, “
Measurement of Natural Vibrations and Resonant Second Higher-Harmonics Due to a Fatigue Crack
,”
ASME J. NDE Diag. Progn. Engr. Syst.
,
3
(
4
), p.
041101
.
8.
Yang
,
Y.
,
Ng
,
C.-T.
,
Kotousov
,
A.
,
Sohn
,
H.
, and
Lim
,
H. J.
,
2018
, “
Second Harmonic Generation at Fatigue Cracks by Low-Frequency Lamb Waves: Experimental and Numerical Studies
,”
Mech. Syst. Signal Process.
,
99
, pp.
760
773
.
9.
Ding
,
T.
,
Zhu
,
W.
,
Ma
,
C.
,
Xiang
,
Y.
,
Deng
,
M.
, and
Xuan
,
F.-Z.
,
2021
, “
Influence of Cyclic-Loading Induced Fatigue Micro-Crack Growth on Generation of Nonlinear Ultrasonic Lamb Waves
,”
J. Nondestruct. Eval.
,
40
(
3
), p.
62
.
10.
Wang
,
J.
,
Xu
,
C.
,
Zhao
,
Y.
,
Hu
,
N.
, and
Deng
,
M.
,
2020
, “
Characterization of Microcrack Orientation Using the Directivity of Secondary Sound Source Induced by an Incident Ultrasonic Transverse Wave
,”
Materials
,
13
(
15
), p.
3318
.
11.
Xu
,
C.
,
Wang
,
J.
, and
Deng
,
M.
,
2021
, “
Closed-Crack Characterization Using Sparse Decomposition Based on Nonlinear Lamb Waves: A Numerical Study
,”
Meas. Sci. Technol.
,
32
(
10
), p.
104004
.
12.
Steven
,
V. B.
,
Kong
,
C. W.
, and
Francis
,
R. L.
,
2018
, “
Experimental Investigation of Second-Harmonic Lamb Wave Generation in Additively Manufactured Aluminum
,”
ASME J. NDE Diag. Progn. Engr. Sys.
,
1
(
4
), p.
041003
.
13.
Chillara
,
V. K.
, and
Lissenden
,
C. J.
,
2015
, “
Nonlinear Guided Waves in Plates Undergoing Localized Microstructural Changes
,”
AIP Conf. Proc.
,
1650
(
1
), pp.
1561
1569
.
14.
Zhao
,
J.
,
Chillara
,
V. K.
,
Ren
,
B.
,
Cho
,
H.
,
Qiu
,
J.
, and
Lissenden
,
C. J.
,
2016
, “
Second Harmonic Generation in Composites: Theoretical and Numerical Analyses
,”
J. Appl. Phys.
,
119
(
6
), p.
064902
.
15.
Bunget
,
G.
,
Henley
,
S.
,
Glass
,
C.
,
Rogers
,
J.
,
Webster
,
M.
,
Farinholt
,
K.
,
Friedersdorf
,
F.
, et al
,
2020
, “
Decomposition Method to Detect Fatigue Damage Precursors in Thin Components Through Nonlinear Ultrasonic With Collinear Mixing Contributions
,”
ASME J. NDE Diag. Progn. Engr. Sys.
,
3
(
2
), p.
021003
.
16.
Yuan
,
B.
,
Shui
,
G.
, and
Wang
,
Y.-S.
,
2020
, “
Evaluating and Locating Plasticity Damage Using Collinear Mixing Waves
,”
J. Mater. Eng. Perform.
,
29
(
7
), pp.
4575
4585
.
17.
Li
,
W.
,
Xu
,
Y.
,
Hu
,
N.
, and
Deng
,
M.
,
2020
, “
Numerical and Experimental Investigations on Second-Order Combined Harmonic Generation of Lamb Wave Mixing
,”
AIP Adv.
,
10
(
4
), p.
045119
.
18.
Li
,
W.
,
Deng
,
M.
,
Hu
,
N.
, and
Xiang
,
Y.
,
2018
, “
Theoretical Analysis and Experimental Observation of Frequency Mixing Response of Ultrasonic Lamb Waves
,”
J. Appl. Phys.
,
124
(
4
), p.
044901
.
19.
Lissenden
,
C. J.
,
Guha
,
A.
, and
Hasanian
,
M.
,
2022
, “
Mutual Interaction of Guided Waves Having Mixed Polarity for Early Detection of Material Degradation
,”
ASME J. NDE Diag. Progn. Engr. Sys.
,
5
(
4
), p.
041001
.
20.
Qu
,
J.
,
Nagy
,
P. B.
, and
Jacobs
,
L. J.
,
2012
, “
Pulse Propagation in an Elastic Medium With Quadratic Nonlinearity (L)
,”
J. Acoust. Soc. Am.
,
131
(
3
), pp.
1827
1830
.
21.
Nagy
,
P. B.
,
Qu
,
J.
, and
Jacobs
,
L. J.
,
2013
, “
Finite-Size Effects on the Quasistatic Displacement Pulse in a Solid Specimen With Quadratic Nonlinearity
,”
J. Acoust. Soc. Am.
,
134
(
3
), pp.
1760
1774
.
22.
Su
,
Z.
,
Ye
,
L.
, and
Lu
,
Y.
,
2006
, “
Guided Lamb Waves for Identification of Damage in Composite Structures: A Review
,”
J. Sound Vib.
,
295
(
3–5
), pp.
753
780
.
23.
Deng
,
M.
,
1999
, “
Cumulative Second-Harmonic Generation of Lamb-Mode Propagation in a Solid Plate
,”
J. Appl. Phys.
,
85
(
6
), pp.
3051
3058
.
24.
Deng
,
M.
,
2003
, “
Analysis of Second-Harmonic Generation of Lamb Modes Using a Modal Analysis Approach
,”
J. Appl. Phys.
,
94
(
6
), pp.
4152
4159
.
25.
Deng
,
M.
,
2006
, “
Analysis of Second-Harmonic Generation of Lamb Waves Propagating in Layered Planar Structures With Imperfect Interfaces
,”
Appl. Phys. Lett.
,
88
(
22
), p.
221902
.
26.
de Lima
,
W. J. N.
, and
Hamilton
,
M. F.
,
2003
, “
Finite-Amplitude Waves in Isotropic Elastic Plates
,”
J. Sound. Vib.
,
265
(
4
), pp.
819
839
.
27.
Wang
,
Y. K.
,
Guan
,
R. Q.
, and
Lu
,
Y.
,
2017
, “
Nonlinear Lamb Waves for Fatigue Damage Identification in FRP-Reinforced Steel Plates
,”
Ultrasonics
,
80
, pp.
87
95
.
28.
Sun
,
X.
,
Ding
,
X.
,
Li
,
F.
,
Zhou
,
S.
,
Liu
,
Y.
,
Hu
,
N.
,
Su
,
Z.
,
Zhao
,
Y.
,
Zhang
,
J.
, and
Deng
,
M.
,
2018
, “
Interaction of Lamb Wave Modes With Weak Material Nonlinearity: Generation of Symmetric Zero-Frequency Mode
,”
Sensors
,
18
(
8
), p.
2451
.
29.
Sun
,
X.
,
Liu
,
H.
,
Zhao
,
Y.
,
Qu
,
J.
,
Deng
,
M.
, and
Hu
,
N.
,
2020
, “
The Zero-Frequency Component of Bulk Waves in Solids With Randomly Distributed Micro-Cracks
,”
Ultrasonics
,
107
, p.
106172
.
30.
Sun
,
X.
,
Shui
,
G.
,
Zhao
,
Y.
,
Liu
,
W.
,
Hu
,
N.
, and
Deng
,
M.
,
2020
, “
Evaluation of Early Stage Local Plastic Damage Induced by Bending Using Quasi-Static Component of Lamb Waves
,”
NDT E Int.
,
116
, p.
102332
.
31.
Wan
,
X.
,
Tse
,
P. W.
,
Zhang
,
X.
,
Xu
,
G.
,
Zhang
,
Q.
,
Fan
,
H.
,
Mao
,
Q.
,
Dong
,
M.
,
Wang
,
C.
, and
Ma
,
H.
,
2018
, “
Numerical Study on Static Component Generation From the Primary Lamb Waves Propagating in a Plate With Nonlinearity
,”
Smart Mater. Struct.
,
27
(
4
), p.
045006
.
32.
Deng
,
M.
,
2020
, “
An Experimental Approach for Detection of the Acoustic Radiation Induced Static Component in Solids
,”
Chin. Phys. Lett.
,
37
(
7
), p.
074301
.
33.
Gao
,
G.
,
Chen
,
H.
,
Hu
,
N.
, and
Deng
,
M.
,
2021
, “
Experimental Observation of Static Component Generation by Lamb Wave Propagation in an Elastic Plate
,”
Ultrasonics
,
117
, p.
106537
.
34.
Suresh
,
S.
,
1998
,
Fatigue of Materials
,
Cambridge University Press, The Edinburgh Building
,
Cambridge CB2 2RU, UK
.
35.
Jiang
,
C.
,
Zhang
,
C.
,
Li
,
W.
,
Deng
,
M.
, and
Ng
,
C. T.
,
2022
, “
Assessment of Damage in Composites Using Static Component Generation of Ultrasonic Guided Waves
,”
Smart Mater. Struct.
,
31
(
4
), p.
045025
.
36.
Chen
,
H.
,
Deng
,
M.
,
Gao
,
G.
,
Hu
,
N.
, and
Xiang
,
Y.
,
2021
, “
Modeling and Simulation of Static Component Generation of Lamb Wave Propagation in a Layered Plate
,”
Ultrasonics
,
116
, p.
106473
.
37.
Kim
,
J. Y.
,
Jacobs
,
L. J.
,
Qu
,
J.
, and
Littles
,
J. W.
,
2006
, “
Experimental Characterization of Fatigue Damage in a Nickel-Base Superalloy Using Nonlinear Ultrasonic Waves
,”
J. Acoust. Soc. Am.
,
120
(
3
), pp.
1266
1273
.
38.
Xiang
,
Y.
,
Deng
,
M.
, and
Xuan
,
F.-Z.
,
2014
, “
Creep Damage Characterization Using Nonlinear Ultrasonic Guided Wave Method: A Mesoscale Model
,”
J. Appl. Phys.
,
115
(
4
), p.
044914
.
You do not currently have access to this content.