Abstract

A framework to generate simulated X-ray computed tomography (XCT) data of ground truth (denoted here as “GT”) flaws was developed for the evaluation of flaw detection algorithms using image comparison metrics. The flaws mimic some of those found in additively manufactured parts. The simulated flaw structure gave a GT data set with which to quantitatively evaluate, by calculating exact errors, the results of flaw detection algorithms applied to simulated XCT images. The simulated data avoided time-consuming manual voxel labeling steps needed for many physical data sets to generate GT images. The voxelated pore meshes that exactly match GT images were used in this study as opposed to using continuum pore meshes. The voxelated pore mesh approach avoids approximation error that occurs when converting continuum pore meshes to voxelated GT images. Spherical pores of varying sizes were randomly distributed near the surface and interior of a cylindrical part. XCT simulation was carried out on the structure at three different signal-to-noise levels by changing the number of frames integrated for each projection. Two different local thresholding algorithms (a commercial code and the Bernsen method) and a global thresholding algorithm (Otsu) were used to segment images using varying sets of algorithm parameters. The segmentation results were evaluated with various image evaluation metrics, which showed different behaviors for the three algorithms regarding “closeness” to the GT data. An approach to optimize the thresholding parameters was demonstrated for the commercial flaw detection algorithm based on semantic evaluation metrics. A framework to evaluate pore sizing error and binary probability of detection was further demonstrated to compare the optimization results.

References

1.
Todorov
,
E.
,
Spencer
,
R.
,
Gleeson
,
S.
,
Jamshidinia
,
M.
, and
Kelly
,
S. M.
,
2014
,
America Makes: National Additive Manufacturing Innovation Institute (NAMII) Project 1: Nondestructive Evaluation (NDE) of Complex Metallic Additive Manufactured (AM) Structures
,
Air Force Research Laboratory, Wright-Patterson Air Force Base
,
OH
.
2.
Kim
,
F. H.
, and
Moylan
,
S. P.
,
2018
, “
Literature Review of Metal Additive Manufacturing Defects
,” NIST Advanced Manufacturing Series (NIST AMS), National Institute of Standards and Technology, Gaithersburg, MD, pp.
100
116
.
3.
Ng
,
G. K. L.
,
Jarfors
,
A. E. W.
,
Bi
,
G.
, and
Zheng
,
H. Y.
,
2009
, “
Porosity Formation and Gas Bubble Retention in Laser Metal Deposition
,”
Appl. Phys. A
,
97
(
3
), pp.
641
649
.
4.
Vandenbroucke
,
B.
, and
Kruth
,
J. P.
,
2007
, “
Selective Laser Melting of Biocompatible Metals for Rapid Manufacturing of Medical Parts
,”
Rapid Prototyp. J.
,
13
(
4
), pp.
196
203
.
5.
King
,
W. E.
,
Barth
,
H. D.
,
Castillo
,
V. M.
,
Gallegos
,
G. F.
,
Gibbs
,
J. W.
,
Hahn
,
D. E.
,
Kamath
,
C.
, and
Rubenchik
,
A. M.
,
2014
, “
Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
2915
2925
.
6.
Beretta
,
S.
, and
Romano
,
S.
,
2017
, “
A Comparison of Fatigue Strength Sensitivity to Defects for Materials Manufactured by AM or Traditional Processes
,”
Int. J. Fatigue
,
94
(
2
), pp.
178
191
.
7.
Kim
,
F. H.
,
Moylan
,
S. P.
,
Garboczi
,
E. J.
, and
Slotwinski
,
J. A.
,
2017
, “
Investigation of Pore Structure in Cobalt Chrome Additively Manufactured Parts Using X-Ray Computed Tomography and Three-Dimensional Image Analysis
,”
Addit. Manuf.
,
17
, pp.
23
38
.
8.
Kim
,
F. H.
,
Pintar
,
A. L.
,
Moylan
,
S. P.
, and
Garboczi
,
E. J.
,
2019
, “
The Influence of X-Ray Computed Tomography Acquisition Parameters on Image Quality and Probability of Detection of Additive Manufacturing Defects
,”
ASME J. Manuf. Sci. Eng.
,
141
(
11
), p.
111002
.
9.
Sezgin
,
M.
, and
Sankur
,
B. l.
,
2004
, “
Survey Over Image Thresholding Techniques and Quantitative Performance Evaluation
,”
ELECTIM
,
13
(
1
), pp.
146
168
.
10.
Wong
,
V. W. H.
,
Ferguson
,
M.
,
Law
,
K. H.
,
Lee
,
Y.-T. T.
, and
Witherell
,
P.
,
2022
, “
Segmentation of Additive Manufacturing Defects Using U-Net
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
3
), p.
031005
.
11.
Chisena
,
R. S.
,
Engstrom
,
S. M.
, and
Shih
,
A. J.
,
2020
, “
Automated Thresholding Method for the Computed Tomography Inspection of the Internal Composition of Parts Fabricated Using Additive Manufacturing
,”
Addit. Manuf.
,
33
, p.
101185
.
12.
Langner
,
O.
,
Karolczak
,
M.
,
Rattmann
,
G.
, and
Kalender
,
W. A.
,
2009
, “
Bar and Point Test Patterns Generated by Dry-Etching for Measurement of High Spatial Resolution in Micro-CT
,”
World Congress on Medical Physics and Biomedical Engineering
,
Munich, Germany
,
Sept. 7–12
.
13.
ASTM E1695-20
,
2020
,
Standard Test Method for Measurement of Computed Tomography (CT) System Performance
,
ASTM International
,
West Conshohocken, PA
.
14.
Shepp
,
L. A.
, and
Logan
,
B. F.
,
1974
, “
The Fourier Reconstruction of a Head Section
,”
IEEE Trans. Nucl. Sci.
,
21
(
3
), pp.
21
43
.
15.
Ching
,
D. J.
, and
Gursoy
,
D.
,
2017
, “
XDesign: An Open-Source Software Package for Designing X-Ray Imaging Phantoms and Experiments
,”
J. Synchrotron Radiat.
,
24
(
2
), pp.
537
544
.
16.
Kazantsev
,
D.
,
Pickalov
,
V.
,
Nagella
,
S.
,
Pasca
,
E.
, and
Withers
,
P. J.
,
2018
, “
TomoPhantom, a Software Package to Generate 2D–4D Analytical Phantoms for CT Image Reconstruction Algorithm Benchmarks
,”
SoftwareX
,
7
, pp.
150
155
.
17.
Kim
,
F. H.
,
Pintar
,
A.
,
Obaton
,
A.-F.
,
Fox
,
J.
,
Tarr
,
J.
, and
Donmez
,
A.
,
2021
, “
Merging Experiments and Computer Simulations in X-Ray Computed Tomography Probability of Detection Analysis of Additive Manufacturing Flaws
,”
NDT & E Int.
,
119
, p.
102416
.
18.
Slotwinski
,
J. A.
,
Garboczi
,
E. J.
, and
Hebenstreit
,
K. M.
,
2014
, “
Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control
,”
J. Res. Natl. Inst. Stand. Technol.
,
119
, pp.
494
528
.
19.
Anderson
,
T. L.
,
2017
,
Fracture Mechanics: Fundamentals and Applications
,
CRC Press
,
Boca Raton, FL
.
20.
Fuchs
,
P.
,
Kröger
,
T.
, and
Garbe
,
C. S.
,
2021
, “
Defect Detection in CT Scans of Cast Aluminum Parts: A Machine Vision Perspective
,”
Neurocomputing
,
453
, pp.
85
96
.
21.
Bircher
,
B. A.
,
Wyss
,
S.
,
Gage
,
D.
,
Küng
,
A.
,
Körner
,
C.
, and
Meli
,
F.
,
2021
, “
High-Resolution X-Ray Computed Tomography for Additive Manufacturing: Towards Traceable Porosity Defect Measurements Using Digital Twins
,”
Joint Special Interest Group Meeting Between EUSPEN and ASPE Advancing Precision in Additive Manufacturing
,
Virtual
,
Sept. 21–23
.
22.
Rentala
,
V. K.
,
Kanzler
,
D.
, and
Fuchs
,
P.
,
2022
, “
POD Evaluation: The Key Performance Indicator for NDE 4.0
,”
J. Nondestruct. Eval.
,
41
(
1
), p.
20
.
23.
Bellon
,
C.
,
Deresch
,
A.
,
Gollwitzer
,
C.
, and
Jaenisch
,
G.-R.
,
2012
, “
Radiographic Simulator aRTist: Version 2
,”
18th World Conference on Nondestructive Testing
,
Durban, South Africa
,
Apr. 16–20
.
24.
Kim
,
F. H.
,
Yeung
,
H.
, and
Garboczi
,
E. J.
,
2021
, “
Characterizing the Effects of Laser Control in Laser Powder Bed Fusion on Near-Surface Pore Formation via Combined Analysis of In-Situ Melt Pool Monitoring and X-Ray Computed Tomography
,”
Addit. Manuf.
,
48
, p.
102372
.
25.
Kim
,
F. H.
,
Pintar
,
A. L.
,
Scott
,
J.-H. J.
, and
Garboczi
,
E. J.
,
2023
, “Simulated X-Ray Computed Tomography (XCT) and Ground Truth Images of Cylindrical Sample with Randomly Distributed Spherical Pores,”
National Institute of Standards and Technology
,
Gaithersburg, MD
.
26.
Brauer
,
C.
,
Aukes
,
D.
,
Brauer
,
J.
, and
Jeffries
,
C.
,
2020
, VoxelFuse, https://github.com/cdbrauer/VoxelFuse
27.
Cignoni
,
P.
,
Callieri
,
M.
,
Corsini
,
M.
,
Dellepiane
,
M.
,
Ganovelli
,
F.
, and
Ranzuglia
,
G.
,
2008
, “
MeshLab: An Open-Source Mesh Processing Tool
,”
Eurographics Italian Chapter Conference
,
V.
Scarano
,
R.
De Chiara
, and
U.
Erra
, eds.,
Salerno, Italy
,
July 2–4
.
28.
Jaenisch
,
G.-R.
,
Bellon
,
C.
,
Samadurau
,
U.
,
Zhukovskiy
,
M.
, and
Podoliako
,
S.
,
2006
, “
McRay—A Monte Carlo Model Coupled to CAD for Radiation Techniques
,”
9th European Conference on NDT
,
Berlin, Germany
,
Sept. 25–29
.
29.
van Aarle
,
W.
,
Palenstijn
,
W. J.
,
Cant
,
J.
,
Janssens
,
E.
,
Bleichrodt
,
F.
,
Dabravolski
,
A.
,
De Beenhouwer
,
J.
,
Joost Batenburg
,
K.
, and
Sijbers
,
J.
,
2016
, “
Fast and Flexible X-Ray Tomography Using the ASTRA Toolbox
,”
Opt. Express
,
24
(
22
), pp.
25129
25147
.
30.
van Aarle
,
W.
,
Palenstijn
,
W. J.
,
De Beenhouwer
,
J.
,
Altantzis
,
T.
,
Bals
,
S.
,
Batenburg
,
K. J.
, and
Sijbers
,
J.
,
2015
, “
The ASTRA Toolbox: A Platform for Advanced Algorithm Development in Electron Tomography
,”
Ultramicroscopy
,
157
, pp.
35
47
.
31.
Feldkamp
,
L. A.
,
Davis
,
L. C.
, and
Kress
,
J. W.
,
1984
, “
Practical Cone-Beam Algorithm
,”
J. Opt. Soc. Am. A
,
1
(
6
), pp.
612
619
.
32.
Bernsen
,
J.
,
1986
, “
Dynamic Thresholding of Grey-Level Images
,”
International Conference on Pattern Recognition
,
Paris, France
,
Oct. 27–31
, pp.
1251
1255
.
33.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst. Man, Cybern.
,
9
(
1
), pp.
62
66
.
34.
Gatos
,
B.
,
Pratikakis
,
I.
, and
Perantonis
,
S. J.
,
2006
, “
Adaptive Degraded Document Image Binarization
,”
Pattern Recognit.
39
(
3
), pp.
317
327
.
35.
Dice
,
L. R.
,
1945
, “
Measures of the Amount of Ecologic Association Between Species
,”
Ecology
,
26
(
3
), pp.
297
302
.
36.
Jaccard
,
P.
,
1912
, “
The Distribution of the Flora in the Alpine Zone.1
,”
New Phytol.
,
11
(
2
), pp.
37
50
.
37.
Chinchor
,
N.
,
1992
, “
MUC-4 Evaluation Metrics
,”
Proceedings of the 4th Conference on Message Understanding, Association for Computational Linguistics
,
McLean, VA
,
June 16–18
, pp.
22
29
.
38.
Martin
,
D.
,
Fowlkes
,
C.
,
Tal
,
D.
, and
Malik
,
J.
,
2001
, “
A Database of Human Segmented Natural Images and Its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics
,”
Proceedings Eighth IEEE International Conference on Computer Vision
,
Vancouver, British Columbia, Canada
,
July 7–14
, Vol. 412, ICCV, pp.
416
423
.
39.
Cárdenes
,
R.
,
de Luis-García
,
R.
, and
Bach-Cuadra
,
M.
,
2009
, “
A Multidimensional Segmentation Evaluation for Medical Image Data
,”
Comput. Methods Programs Biomed.
,
96
(
2
), pp.
108
124
.
40.
Reddy
,
R. A.
,
Prasad
,
E. V.
, and
Reddy
,
L. S. S.
,
2012
, “
Abnormality Detection of Brain MR Image Segmentation Using Iterative Conditional Mode Algorithm
,”
Int. J. Appl. Inf. Syst.
,
5
(
2
), pp.
56
65
.
41.
RamaswamyReddy
,
A.
,
Prasad
,
E. V.
, and
Reddy
,
L. S. S.
,
2013
, “
Comparative Analysis of Brain Tumor Detection Using Different Segmentation Techniques
,”
Int. J. Comput. Appl.
,
82
(
14
), pp.
14
28
. .
42.
Vadaparthi
,
N.
,
Penumatsa
,
S. V.
,
Yarramalle
,
S.
, and
Murthy
,
P.
,
2011
, “
Segmentation of Brain MR Images Based on Finite Skew Gaussian Mixture Model With Fuzzy C-Means Clustering and EM Algorithm
,”
Int. J. Comput. Appl.
,
975
(
10
), p.
8887
.
43.
Rand
,
W. M.
,
1971
, “
Objective Criteria for the Evaluation of Clustering Methods
,”
J. Am. Stat. Assoc.
,
66
(
336
), pp.
846
850
.
44.
Hubert
,
L.
, and
Arabie
,
P.
,
1985
, “
Comparing Partitions
,”
J. Classif.
,
2
(
1
), pp.
193
218
.
45.
Viola
,
P.
, and
Wells Iii
,
W. M.
,
1997
, “
Alignment by Maximization of Mutual Information
,”
Int. J. Comput. Vis.
,
24
(
2
), pp.
137
154
.
46.
Russakoff
,
D. B.
,
Tomasi
,
C.
,
Rohlfing
,
T.
, and
Maurer
,
C. R.
,
2004
,
Image Similarity Using Mutual Information of Regions
,
Springer
,
Berlin/Heidelberg
, pp.
596
607
.
47.
Meilă
,
M.
,
2003
,
Comparing Clusterings by the Variation of Information
,
Springer
,
Berlin/Heidelberg
, pp.
173
187
.
48.
Shrout
,
P. E.
, and
Fleiss
,
J. L.
,
1979
, “
Intraclass Correlations: Uses in Assessing Rater Reliability
,”
Psychol. Bull.
,
86
(
2
), pp.
420
428
.
49.
Gerig
,
G.
,
Jomier
,
M.
, and
Chakos
,
M.
,
2001
,
Valmet: A New Validation Tool for Assessing and Improving 3D Object Segmentation
,
Springer
,
Berlin/Heidelberg
, pp.
516
523
.
50.
Cohen
,
J.
,
1960
, “
A Coefficient of Agreement for Nominal Scales
,”
Educ. Psychol. Meas.
,
20
(
1
), pp.
37
46
.
51.
Powers
,
D. M.
,
2010
, “
Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation
,”
Int. J. Mach. Learn. Technol.
,
2
(
1
), pp.
37
63
.
52.
McLachlan
,
G. J.
,
1999
, “
Mahalanobis Distance
,”
Resonance
,
4
(
6
), pp.
20
26
.
53.
Taha
,
A. A.
, and
Hanbury
,
A.
,
2015
, “
Metrics for Evaluating 3D Medical Image Segmentation: Analysis, Selection, and Tool
,”
BMC Med. Imaging
,
15
(
1
), p.
29
.
54.
Box
,
G. E. P.
,
Hunter
,
J. S.
, and
Hunter
,
W. G.
,
2005
,
Statistics for Experimenters
,
Wiley-Interscience
,
New York
.
55.
Cook
,
R. D.
, and
Nachtsheim
,
C. J.
,
1989
, “
Computer-Aided Blocking of Factorial and Response-Surface Designs
,”
Technometrics
,
31
(
3
), pp.
339
346
.
56.
Wheeler
,
B.
,
2004
,
optBlock. AlgDesign. The R Project for Statistical Computing
. https://www.r-project.org/
57.
R Core Team
,
2022
,
A Language and Environment for Statistical Computing
,
R Foundation for Statistical Computing
,
Vienna, Austria
.
58.
Bates
,
D.
,
Mächler
,
M.
,
Bolker
,
B.
, and
Walker
,
S.
,
2015
, “
Fitting Linear Mixed-Effects Models Using lme4
,”
J. Stat. Softw.
,
67
(
1
), pp.
1
48
.
59.
Efron
,
B.
, and
Tibshirani
,
R. J.
,
1994
,
An Introduction to the Bootstrap
,
Chapman and Hall/CRC
,
London
.
60.
Kim
,
F. H.
,
Penumadu
,
D.
,
Gregor
,
J.
,
Kardjilov
,
N.
, and
Manke
,
I.
,
2013
, “
High-Resolution Neutron and X-Ray Imaging of Granular Materials
,”
J. Geotech. Geoenvironmental Eng.
,
139
(
5
), pp.
715
723
.
61.
Department of Defense
,
2009
, “Nondestructive Evaluation System Reliability Assessment,”
MIL-HNBK-1823A, Department of Defense
.
62.
Myers
,
R. H.
,
Montgomery
,
D. C.
,
Vining
,
G. G.
, and
Robinson
,
T. J.
,
2012
,
Generalized Linear Models: With Applications in Engineering and the Sciences
,
John Wiley & Sons
,
Hoboken, NJ
.
You do not currently have access to this content.