Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Health prognosis is an advanced approach for anticipating the future status of systems, structures, and components. While it is accepted as an important step in boosting maintenance performance and resilience of a system, the subject of post-prognosis maintenance decision-making remains unsettled. To address this problem, we present one of the most effective economic criteria for concurrently assessing the performance and resilience of the time-based and condition-based maintenance methods. This criteria is a linear combination of the asymptotic average cost per unit of time and the standard deviation of the mean cost per renewal cycle of maintenance charges per renewal cycle. Ultimately, we will evaluate these two maintenance procedures to select the one that gives the optimum mix of lifetime and robustness for our system. We will also study how to fine-tune our new criteria to obtain the ideal balance of performance and robustness for two systems, the first is a system with changeable behavior, while the second one presents a system with more or less stable behavior. The inclusion of the Monte Carlo method improves the comparative study of maintenance methods, delivering insights into the performance and resilience of each adaptation in decision-making.

References

1.
Cheikh
,
K.
,
Boudi
,
E. M.
,
Rabi
,
R.
, and
Mokhliss
,
H.
,
2024
, “
Influence of the Relative Weight of the Performance and Robustness of Condition-Based Maintenance Strategies and Time-Based Maintenance Strategies
,”
J. Harbin Eng. Univ.
,
45
(
1
), pp.
93
98
. https://harbinengineeringjournal.com/index.php/journal/article/view/2296
2.
Cheikh
,
K.
, and
Boudi
,
E. M.
,
2023
, “
Evaluating the Performance and Robustness of Condition-Based Maintenance Strategies and Time-Based Maintenance Strategies
,”
J. Mech. Eng. Res. Dev.
,
46
(
1
), pp.
76
85
. https://jmerd.net/Paper/Vol.46
3.
Gackowiec
,
P.
,
2019
, “
General Overview of Maintenance Strategies–Concepts and Approaches
,”
Multidiscip. Asp. Prod. Eng.
,
2
(
1
), pp.
126
139
.
4.
Zitrou
,
A.
,
Bedford
,
T.
, and
Daneshkhah
,
A.
,
2013
, “
Robustness of Maintenance Decisions: Uncertainty Modelling and Value of Information
,”
Reliab. Eng. Syst. Saf.
,
120
(
1
), pp.
60
71
.
5.
Olde Keizer
,
M. C. A.
,
Flapper
,
S. D. P.
, and
Teunter
,
R. H.
,
2017
, “
Condition-Based Maintenance Policies for Systems With Multiple Dependent Components: A Review
,”
Eur. J. Oper. Res.
,
261
(
2
), pp.
405
420
.
6.
Gong
,
Y.
,
Huynh
,
K. T.
,
Langeron
,
Y.
, and
Grall
,
A.
,
2023
, “
Degradation Index Construction and Learning-Based Prognostics for Stochastically Deteriorating Feedback Control Systems
,”
Reliab. Eng. Syst. Saf.
,
238
(
1
), p.
109460
.
7.
Mahfoud
,
H.
,
El Barkany
,
A.
, and
El Biyaali
,
A.
,
2016
, “
Preventive Maintenance Optimization in Healthcare Domain: Status of Research and Perspective
,”
J. Qual. Reliab. Eng.
,
2016
(
1
), p.
5314312
.
8.
Zhou
,
S.
,
Xu
,
A.
,
Tang
,
Y.
, and
Shen
,
L.
,
2023
, “
Fast Bayesian Inference of Reparameterized Gamma Process With Random Effects
,”
IEEE Trans. Reliab.
,
73
(
1
), pp.
399
412
.
9.
Scaife
,
A. D.
,
2023
, “
Improve Predictive Maintenance Through the Application of Artificial Intelligence: A Systematic Review
,”
Results Eng.
,
21
(
1
), p.
101645
.
10.
An
,
Y.
,
Chen
,
X.
,
Gao
,
K.
,
Zhang
,
L.
,
Li
,
Y.
, and
Zhao
,
Z.
,
2023
, “
A Hybrid Multi-objective Evolutionary Algorithm for Solving an Adaptive Flexible Job-Shop Rescheduling Problem With Real-Time Order Acceptance and Condition-Based Preventive Maintenance
,”
Expert Syst. Appl.
,
212
(
1
), p.
118711
.
11.
Li
,
H.
,
Deloux
,
E.
, and
Dieulle
,
L.
,
2016
, “
A Condition-Based Maintenance Strategy for Multi-component Systems With Lévy Copulas Dependence
,”
Reliab. Eng. Syst. Saf.
,
149
(
1
), pp.
44
55
.
12.
Caballé
,
N. C.
,
Castro
,
I. T.
,
Pérez
,
C. J.
, and
Lanza-Gutiérrez
,
J. M.
,
2016
, “
Condition-Based Maintenance of a Dependent Degradation-Threshold-Shock Model in a System With Multiple Degradation Processes
,”
Reliab. Eng. Syst. Saf.
,
154
(
1
), pp.
21
31
.
13.
Zhang
,
Z.
,
Si
,
X.
,
Hu
,
C.
, and
Lei
,
Y.
,
2018
, “
Degradation Data Analysis and Remaining Useful Life Estimation: A Review on Wiener-Process-Based Methods
,”
Eur. J. Oper. Res.
,
271
(
3
), pp.
775
796
.
14.
Huynh
,
K. T.
,
Barros
,
A.
,
Bérenguer
,
C.
, and
Castro
,
I. T.
,
2011
, “
A Periodic Inspection and Replacement Policy for Systems Subject to Competing Failure Modes due to Degradation and Traumatic Events
,”
Reliab. Eng. Syst. Saf.
,
96
(
4
), pp.
497
508
.
15.
de Jonge
,
B.
, and
Scarf
,
P. A.
,
2020
, “
A Review on Maintenance Optimization
,”
Eur. J. Oper. Res.
,
285
(
3
), pp.
805
824
.
16.
Bousdekis
,
A.
,
Lepenioti
,
K.
,
Apostolou
,
D.
, and
Mentzas
,
G.
,
2021
, “
A Review of Data-Driven Decision-Making Methods for Industry 4.0 Maintenance Applications
,”
Electronics
,
10
(
7
), p.
828
.
17.
Aldrini
,
J.
,
Chihi
,
I.
, and
Sidhom
,
L.
,
2023
, “
Fault Diagnosis and Self-Healing for Smart Manufacturing: A Review
,”
J. Intell. Manuf.
,
35
(
6
), pp.
1
33
.
18.
Basri
,
E. I.
,
Razak
,
I. H. A.
,
Ab-Samat
,
H.
, and
Kamaruddin
,
S.
,
2017
, “
Preventive Maintenance (PM) Planning: A Review
,”
J. Quality Maint. Eng.
,
23
(
2
), pp.
114
143
.
19.
Zhang
,
N.
, and
Si
,
W.
,
2020
, “
Deep Reinforcement Learning for Condition-Based Maintenance Planning of Multi-component Systems Under Dependent Competing Risks
,”
Reliab. Eng. Syst. Saf.
,
203
(
1
), p.
107094
.
20.
Caballé
,
N. C.
,
Castro
,
I. T.
,
Pérez
,
C. J.
, and
Lanza-Gutiérrez
,
J. M.
,
2015
, “
A Condition-Based Maintenance of a Dependent Degradation Threshold-Shock Model in a System With Multiple Degradation Processes
,”
Reliab. Eng. Syst. Saf.
,
134
, pp.
98
109
.
21.
Huynh
,
K. T.
,
Grall
,
A.
, and
Bérenguer
,
C.
,
2017
, “
Assessment of Diagnostic and Prognostic Condition Indices for Efficient and Robust Maintenance Decision-Making of Systems Subject to Stress Corrosion Cracking
,”
Reliab. Eng. Syst. Saf.
,
159
(
1
), pp.
237
254
.
22.
Ma
,
Q.
,
Tian
,
G.
,
Zeng
,
Y.
,
Li
,
R.
,
Song
,
H.
,
Wang
,
Z.
,
Gao
,
B.
, and
Zeng
,
K.
,
2021
, “
Pipeline In-Line Inspection Method, Instrumentation and Data Management
,”
Sensors
,
21
(
11
), p.
3862
.
23.
Azar
,
K.
,
Hajiakhondi-Meybodi
,
Z.
, and
Naderkhani
,
F.
,
2022
, “
Semi-Supervised Clustering-Based Method for Fault Diagnosis and Prognosis: A Case Study
,”
Reliab. Eng. Syst. Saf.
,
222
(
1
), p.
108405
.
24.
Abdel-Hameed
,
M.
,
2014
,
Lévy Processes and Their Applications in Reliability and Storage, ser. SpringerBriefs in Statistics
,
Springer
,
New York
.
25.
de Oliveira
,
M. C. K.
,
Miranda
,
L. R.
,
de Carvalho
,
A. B.
, and
Miranda
,
D. F. S.
,
2018
, “
Viscosity of Water-in-Oil Emulsions From Different American Petroleum Institute Gravity Brazilian Crude Oils
,”
Energy Fuels
,
32
(
3
), pp.
2749
2759
.
26.
Lei
,
Y.
,
Li
,
N.
,
Guo
,
L.
,
Li
,
N.
,
Yan
,
T.
, and
Lin
,
J.
,
2018
, “
Machinery Health Prognostics: A Systematic Review From Data Acquisition to RUL Prediction
,”
Mech. Syst. Signal Process.
,
104
(
1
), pp.
799
834
.
27.
Alabbasi
,
A. M. A.
,
Paek
,
S. H.
,
Kim
,
D.
, and
Cramond
,
B.
,
2022
, “
What Do Educators Need to Know About the Torrance Tests of Creative Thinking: A Comprehensive Review
,”
Front. Psychol.
,
13
(
1
), p.
1000385
.
28.
Hu
,
Y.
,
Miao
,
X.
,
Si
,
Y.
,
Pan
,
E.
, and
Zio
,
E.
,
2022
, “
Prognostics and Health Management: A Review From the Perspectives of Design, Development and Decision
,”
Reliab. Eng. Syst. Saf.
,
217
(
1
), p.
108063
.
29.
Roy
,
R.
,
Stark
,
R.
,
Tracht
,
K.
,
Takata
,
S.
, and
Mori
,
M.
,
2016
, “
Continuous Maintenance and the Future–Foundations and Technological Challenges
,”
CIRP Ann.
,
65
(
2
), pp.
667
688
.
30.
Li
,
Y.
,
Peng
,
S.
,
Li
,
Y.
, and
Jiang
,
W.
,
2020
, “
A Review of Condition-Based Maintenance: Its Prognostic and Operational Aspects
,”
Front. Eng. Manag.
,
7
(
3
), pp.
323
334
.
31.
Zheng
,
Z.
,
Wang
,
F.
,
Gong
,
G.
,
Yang
,
H.
, and
Han
,
D.
,
2023
, “
Intelligent Technologies for Construction Machinery Using Data-Driven Methods
,”
Autom. Constr.
,
147
(
1
), p.
104711
.
32.
Benbouzid
,
M.
,
Berghout
,
T.
,
Sarma
,
N.
,
Djurović
,
S.
,
Wu
,
Y.
, and
Ma
,
X.
,
2021
, “
Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review
,”
Energies
,
14
(
18
), p.
5967
.
You do not currently have access to this content.