A dynamic model for undamped, water hammer-induced, radial vibration of long, thin-walled, laminated, filament wound pipes is derived. The model is based on the interaction of the unsteady flow parameters with the anisotropic elastic properties of the pipe. With the aid of integral transforms and generalized functions, an approximate solution of the derived governing equation is achieved and its implementation on a representative example is discussed.
Issue Section:
Piper and Riser Technology
References
1.
Oliveira
, G. M.
, Franco
, A. T.
, and Negrao
, C. O. R.
, 2015
, “Mathematical Model for Viscoplastic Fluid Hammer
,” ASME J. Fluids Eng.
, 138
(1
), p. 011301
.2.
Ghidaoui
, M. S.
, Zhao
, M.
, McInnis
, D. A.
, and Axworthy
, A. H.
, 2005
, “A Review of Water Hammer Theory and Practice
,” ASME Appl. Mech. Rev.
, 58
(1
), pp. 49
–76
.3.
Yao
, E.
, Kember
, G.
, and Hansen
, D.
, 2015
, “Analysis of Water Hammer Attenuation in Applications With Varying Valve Closure Times
,” J. Eng. Mech.
, 141
(1
), pp. 401
–417
.4.
Gaul
, L.
, and Wenzel
, W.
, 2002
, “A Coupled Symmetric BE–FE Method for Acoustic Fluid–Structure Interaction
,” Eng. Anal. Boundary Elem.
, 26
(7
), pp. 629
–636
.5.
Pavlou
, D. G.
, 2013
, “Introduction
,” Composite Materials in Piping Applications
, Destech Publications
, Lancaster, CA
.6.
Shi
, J.-X.
, Natsuki
, T.
, Lei
, X.-W.
, and Ni
, Q.-Q.
, 2014
, “Wave Propagation in the Filament-Wound Composite Pipes Conveying Fluid: Theoretical Analysis for Structural Health Monitoring Applications
,” Compos. Sci. Technol.
, 98
, pp. 9
–14
.7.
Ansari
, R.
, Alisafaei
, F.
, and Ghaedi
, P.
, 2010
, “Dynamic Analysis of Multi-Layered Filament–Wound Composite Pipes Subjected to Cyclic Internal Pressure and Cyclic Temperature
,” Compos. Struct.
, 92
(5
), pp. 1100
–1109
.8.
Cesana
, P.
, and Bitter
, N.
, 2014
, “Modeling and Analysis of Water-Hammer in Coaxial Pipes
,” J. Fluids Struct.
, 51
, pp. 225
–239
.9.
Perotti
, L. E.
, Deiterding
, R.
, Inaba
, K.
, Shephers
, J.
, and Ortiz
, M.
, 2013
, “Elastic Response of Water-Filled Fiber Composite Tubes Under Shock Wave Loading
,” Int. J. Solids Struct.
, 50
(3–4
), pp. 473
–486
.10.
Tijsseling
, A. S.
, 2007
, “Water Hammer With Fluid–Structure Interaction in Thick-Walled Pipes
,” Comput. Struct.
, 85
(11–14
), pp. 844
–851
.11.
HoYou
, J.
, and Inaba
, K.
, 2013
, “Fluid–Structure Interaction in Water-Filled Pipes of Anisotropic Composite Materials
,” J. Fluids Struct.
, 36
, pp. 162
–173
.12.
Zanganeh
, R.
, Ahmadi
, A.
, and Keramat
, A.
, 2015
, “Fluid–Structure Interaction With Viscoelastic Supports During Waterhammer in a Pipeline
,” J. Fluids Struct.
, 54
, pp. 215
–234
.13.
Kollár
, L. P.
, and Springer
, G. S.
, 2009
, Mechanics of Composite Structures
, Cambridge University Press
, Cambridge, UK
, Chap. 8.14.
Hyer
, M. W.
, 2009
, Stress Analysis of Fiber-Reinforced Composite Materials
, DEStech Publications
, Lancaster, CA
, Chap. 7.15.
Prudnikov
, A. P.
, Brychkov
, Yu. A.
, and Marichev
, O. I.
, 2002
, Integrals and Series, Vol. 5: Inverse Laplace Transforms
, Taylor & Francis
, London
, Chap. 2.16.
“Composites/Plastics” http://composite.about.com
17.
“Wolfram Mathematica” http://www.wolfram.com/mathematica/?fp=middle
18.
“Engineering ToolBox” http://www.engineeringtoolbox.com/
Copyright © 2015 by ASME
You do not currently have access to this content.