Abstract

This article presents an extreme value analysis on data of significant wave height based on time-series simulation. A method to simulate time series with given marginal distribution and preserving the autocorrelation structure in the data is applied to significant wave height data. Then, extreme value analysis is performed by simulating from the fitted time-series model that preserves both the marginal probability distribution and the autocorrelation. In this way, the effect of serial correlation on the extreme values can be taken into account, without subsampling and de-clustering of the data. The effect of serial correlation on estimating extreme wave conditions have previously been highlighted, and failure to account for this effect will typically lead to an overestimation of extreme conditions. This is demonstrated by this study, which compares extreme value estimates from the simulated times-series model with estimates obtained directly from the marginal distribution assuming that 3-h significant wave heights are independent and identically distributed. A dataset of significant wave height provided as part of a second benchmark exercise on environmental extremes that was presented at OMAE 2021 has been analyzed. This article is an extension of a study presented at OMAE 2022 (OMAE2022-78795) and includes additional preprocessing of the data to account for seasonality and new results.

References

1.
Muir
,
L. R.
, and
El-Shaarawi
,
A.
,
1986
, “
On the Calculation of Extreme Wave Heights: A Review
,”
Ocean. Eng.
,
13
(
1
), pp.
93
118
.
2.
Jonathan
,
P.
, and
Ewans
,
K.
,
2013
, “
Statistical Modelling of Extreme Ocean Environments for Marine Design: A Review
,”
Ocean. Eng.
,
62
, pp.
91
109
.
3.
Vanem
,
E.
,
2011
, “
Long-Term Time-Dependent Stochastic Modelling of Extreme Waves
,”
Stoch. Environ. Res. Risk Assess.
,
25
, pp.
185
209
.
4.
Stefanakos
,
C. N.
, and
Athanassoulis
,
G. A.
,
2006
, “
Extreme Value Predictions Based on Nonstationary Time Series of Wave Data
,”
Environmetrics
,
17
(
1
), pp.
25
46
.
5.
Baxevani
,
A.
,
Caires
,
S.
, and
Rychlik
,
I.
,
2009
, “
Spatio-Temporal Statistical Modelling of Significant Wave Height
,”
Environmetrics
,
20
(
1
), pp.
14
31
.
6.
Vanem
,
E.
,
Huseby
,
A. B.
, and
Natvig
,
B.
,
2012
, “
A Bayesian Hierarchical Spatio-Temporal Model for Significant Wave Height in the North Atlantic
,”
Stoch. Environ. Res. Risk Assess.
,
26
, pp.
609
632
.
7.
Randell
,
D.
,
Feld
,
G.
,
Ewans
,
K.
, and
Jonathan
,
P.
,
2015
, “
Distributions of Return Values for the Ocean Wave Characteristics in the South China Sea Using Directional-Seasonal Extreme Value Analysis
,”
Environmetrics
,
26
(
6
), pp.
442
450
.
8.
Vanem
,
E.
,
Fazeres-Ferradosa
,
T.
,
Rosa-Santos
,
P.
, and
Taveira-Pinto
,
F.
,
2019
, “
Statistical Description and Modelling of Extreme Ocean Wave Conditions
,” Proceedings of the Institution of Civil Engineers - Maritime Engineering, Vol.
172
,
Thomas Telford Ltd
, pp.
124
132
.
9.
Mackay
,
E.
,
Haselsteiner
,
A. F.
,
Coe
,
R. G.
, and
Manuel
,
L.
,
2021
, “
A Second Benchmarking Exercise on Estimating Extreme Environmental Conditions: Methodology & Baseline Results
,”
Proceedings of 40th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2021)
,
Virtual Conference
,
June 21–30
,
American Society of Mechanical Engineers (ASME)
.
10.
Haselsteiner
,
A. F.
,
Coe
,
R. G.
,
Manuel
,
L.
,
Chai
,
W.
,
Leira
,
B.
,
Clarindo
,
G.
,
Guedes Soares
,
C.
,
Sander
,
A.
,
Ohlendorf
,
J. -H.
,
Thoben
,
K. -D.
,
de Hauteclocque
,
G.
,
Mackay
,
E.
,
Jonathan
,
P.
,
Qiao
,
C.
,
Myers
,
A.
,
Rode
,
A.
,
Hildebrandt
,
A.
,
Schmidt
,
B.
,
Vanem
,
E.
, and
Huseby
,
A. B.
,
2021
, “
A Benchmarking Exercise for Environmental Contours
,”
Ocean. Eng.
,
236
, p.
109504
.
11.
Mackay
,
E.
,
de Hauteclocque
,
G.
,
Vanem
,
E.
, and
Jonathan
,
P.
,
2021
, “
The Effect of Serial Correlation in Environmental Conditions on Estimates of Extreme Events
,”
Ocean. Eng.
,
242
, p.
110092
.
12.
Vanem
,
E.
,
2022
, “
Analyzing Extreme Sea State Conditions by Time-Series Simulation
,”
Proceedings of 41st International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2022)
,
Hamburg, Germany
,
June 5–10
,
American Society of Mechanical Engineers (ASME)
.
13.
Bao
,
Y.
,
Sing
,
Z.
, and
Qiao
,
F.
,
2020
, “
FIO-ESM Version 2.0: Model Description and Evaluation
,”
J. Geophys. Res.: Oceans
,
125
(
6
), p.
e2019JC016036
.
14.
Song
,
Z.
,
Bao
,
Y.
,
Zhang
,
D.
,
Shu
,
Q.
,
Song
,
Y.
, and
Qiao
,
F.
,
2020
, “
Centuries of Monthly and 3-Hourly Global Ocean Wave Data for Past, Present, and Future Climate Research
,”
Sci. Data
,
7
(
1
), p.
226
.
15.
Vanem
,
E.
,
2017
, “
A Regional Extreme Value Analysis of Ocean Waves in a Changing Climate
,”
Ocean. Eng.
,
144
, pp.
277
295
.
16.
Hoskins
,
J. R. M.
, and
Wallis
,
J. R.
,
1997
,
Regional Frequency Analysis
,
Cambridge University Press
,
Cambridge, UK
.
17.
Coles
,
S.
,
2001
,
An Introduction to Statistical Modeling of Extreme Values
,
Springer-Verlag
,
New York
.
18.
Vanem
,
E.
,
2018
, “
A Simple Approach to Account for Seasonality in the Description of Extreme Ocean Environments
,”
Mar. Syst. Ocean Technol.
,
13
(
2–4
), pp.
63
73
.
19.
Vanem
,
E.
,
2016
, “
Joint Statistical Models for Significant Wave Height and Wave Period in a Changing Climate
,”
Mar. Struct.
,
49
, pp.
180
205
.
20.
Monbet
,
V.
,
Ailliot
,
P.
, and
Prevesto
,
M.
,
2007
, “
Survey of Stochastic Models for Wind and Sea State Time Series
,”
Probabilistic. Eng. Mech.
,
22
(
2
), pp.
113
126
.
21.
Bibby
,
B. M.
,
Skovgaard
,
I. M.
, and
Sørensen
,
M.
,
2005
, “
Diffusion-Type Models With Given Marginal Distribution and Autocorrelation Function
,”
Bernoulli
,
11
(
2
), pp.
191
220
.
22.
Bensoussan
,
A.
, and
Brouste
,
A.
,
2018
, “
Marginal Weibull Diffusion Model for Wind Speed Modeling and Short-Term Forecasting
,”
Renewable Energy: Forecasting and Risk Management
,
P.
Drobinski
,
M.
Mougeot
,
D.
Picard
,
R.
Plougonven
, and
P.
Tankov
, eds., Vol.
254
of Springer Proceesings in Mathematics & Statistics,
Springer Nature
,
Switzerland
, pp.
3
22
.
23.
Sim
,
C.-H.
,
1986
, “
Simulation of Weibull and Gamma Autoregressive Stationary Process
,”
Commun. Stat. Simul. Comput.
,
15
(
4
), pp.
1141
1146
.
24.
Kaur
,
S.
, and
Rakshit
,
M.
,
2019
, “
Gaussian and Non-Gaussian Autoregressive Time Series Models With Rainfall Data
,”
Int. J. Eng. Adv. Technol.
,
9
(
1
), pp.
6699
6704
.
25.
Papalexiou
,
S. M.
,
2018
, “
Unified Theory for Stochastic Modelling of Hydroclimatic Processes: Preserving Marginal Distributions, Correlation Structures, and Intermittency
,”
Adv. Water Resour.
,
115
, pp.
234
252
.
26.
Papalexiou
,
S. M.
,
Markonis
,
Y.
,
Lombardo
,
F.
,
AghaKouchak
,
A.
, and
Foufoula-Georgiou
,
E.
,
2018
, “
Precise Temporal Disaggregation Preserving Marginals and Correlations (DiPMaC) for Stationary and Nonstationary Processes
,”
Water. Resour. Res.
,
54
(
10
), pp.
7435
7458
.
27.
Carpena
,
P.
,
Bernaola-Galván
,
P. A.
,
Gómez-Extremera
,
M.
, and
Coronado
,
A. V.
,
2020
, “
Transforming Gaussian Correlations: Applications to Generating Long-Range Power-Law Correlated Time Series With Arbitrary Distribution
,”
Chaos
,
30
(
8
), p.
083140
.
28.
DNV
,
2021
, “
Environmental Conditions and Environmental Loads
,” September 2019 ed., DNV, DNV-RP-C205.
29.
Vanem
,
E.
,
2015
, “
Uncertainties in Extreme Value Modeling of Wave Data in a Climate Change Perspective
,”
J. Ocean Eng. Mar. Energy
,
1
, pp.
339
359
.
30.
Cheng
,
R.
, and
Amin
,
N.
,
1983
, “
Estimating Parameters in Continuous Univariate Distributions With a Shifted Origin
,”
J. R. Stat. Soc., Ser. B
,
45
(
3
), pp.
394
403
. https://www.jstor.org/stable/2345411
31.
Cousineau
,
D.
,
2009
, “
Fitting the Three-Parameter Weibull Distribution: Review and Evaluation of Existing and New Methods
,”
IEEE Trans. Dielectr. Electr. Insul.
,
16
(
1
), pp.
281
288
.
32.
Nagatsuka
,
H.
,
Kamakura
,
T.
, and
Balakrishnan
,
N.
,
2013
, “
A Consistent Method of Estimation for the Three-Parameter Weibull Distribution
,”
Comput. Stat. Data Anal.
,
58
, pp.
210
226
.
33.
Cousineau
,
D.
,
2009
, “
Nearly Unbiased Estimators for the Three-Parameter Weibull Distribution With Greater Efficiency Than the Iterative Likelihood Method
,”
Brit. J. Math. Stat. Psychol.
,
62
(
1
), pp.
167
191
.
34.
Ng
,
H.
,
Luo
,
L.
,
Hu
,
Y.
, and
Duan
,
F.
,
2012
, “
Parameter Estimation of the Three-Parameter Weibull Distribution Based on Progressively Type-II Censored Samples
,”
J. Stat. Comput. Simul.
,
82
(
11
), pp.
1661
1678
.
35.
Teimouri
,
M.
,
Hoseini
,
S. M.
, and
Nadarajah
,
S.
,
2013
, “
Comparison of Estimation Methods for the Weibull Distribution
,”
Statistics
,
47
(
1
), pp.
93
109
.
36.
Nwobi
,
F. N.
, and
Ugomma
,
C. A.
,
2014
, “
A Comparison of Methods for the Estimation of Weibull Distribution Parameters
,”
Metodološki zvezki
,
11
(
1
), pp.
65
78
.
37.
Örkcü
,
H. H.
,
Özsoy
,
V. S.
,
Aksoy
,
E.
, and
Dogan
,
M. I.
,
2015
, “
Estimating the Parameters of 3-p Weibull Distribution Using Particle Swarm Optimization: A Comprehensive Experimental Comparison
,”
Appl. Math. Comput.
,
268
, pp.
201
226
.
38.
Li
,
T.
,
Griffiths
,
W.
, and
Chen
,
J.
,
2017
, “
Weibull Modulus Estimation by the Non-Linear Least Squares Method: A Solution to Deviation Occuring in Traditional Weibull Estimation
,”
Metall. Mater. Trans. A.
,
48
, pp.
5516
5528
.
39.
Vanem
,
E.
,
Gramstad
,
O.
, and
Bitner-Gregersen
,
E. M.
,
2019
, “
A Simulation Study on the Uncertainty of Environmental Contours Due to Sampling Variability for Different Estimation Methods
,”
Appl. Ocean. Res.
,
91
, p.
101870
.
40.
Papalexiou
,
S. M.
,
2022
, “
Rainfall Generation Revisited: Introducing CoSMoS-2s and Advancing Copula-Based Intermittent Time Series Modelling
,”
Water Resourc. Res.
,
58
(
6
), p.
e2021WR031641
.
41.
Papalexiou
,
S. M.
,
Serinaldi
,
F.
, and
Porcu
,
E.
,
2021
, “
Advancing Space-time Simulation of Random Fields: From Storms to Cyclones and Beyond
,”
Water. Resour. Res.
,
57
(
8
), p.
e2020WR029466
.
42.
Stefanakos
,
C. N.
, and
Vanem
,
E.
,
2018
, “
Nonstationary Fuzzy Forecasting of Wind and Wave Climate in Very Long-Term Scales
,”
J. Ocean Eng. Sci.
,
3
(
2
), pp.
144
155
.
43.
Vanem
,
E.
,
Huseby
,
A. B.
, and
Natvig
,
B.
,
2012
, “
Modeling Ocean Wave Climate With a Bayesian Hierarchical Space-Time Model and a Log-Transform of the Data
,”
Ocean Dyn.
,
62
, pp.
355
375
.
44.
Zanini
,
E.
,
Eastoe
,
E.
,
Jones
,
M. J.
,
Randell
,
D.
, and
Jonathan
,
P.
,
2020
, “
Flexible Covariate Representations for Extremes
,”
Environmetrics
,
31
(
5
), p.
e2624:1
.
45.
Menéndez
,
M.
,
Méndez
,
F. J.
,
Izaguirre
,
C.
,
Luceño
,
A.
, and
Losada
,
I. J.
,
2009
, “
The Influence of Seasonality on Estimating Return Values of Significant Wave Height
,”
Coast. Eng.
,
56
(
3
), pp.
211
219
.
46.
Calderón-Vega
,
F.
,
Vázquez-Hernández
,
A.
, and
García-Soto
,
A.
,
2013
, “
Analysis of Extreme Waves With Seasonal Variation in the Gulf of Mexico Using a Time-Dependend GEV Model
,”
Ocean. Eng.
,
73
, pp.
68
82
.
47.
Jonathan
,
P.
, and
Ewans
,
K.
,
2011
, “
Modeling the Seasonality of Extreme Waves in the Gulf of Mexico
,”
ASME J. Offshore. Mech. Arct. Eng.
,
133
(
2
), p.
021104
.
48.
Vanem
,
E.
,
2015
, “
Non-Stationary Extreme Value Models to Account for Trends and Shifts in the Extreme Wave Climate Due to Climate Change
,”
Appl. Ocean. Res.
,
52
, pp.
201
211
.
49.
De Leo
,
F.
,
Besio
,
G.
,
Briganti
,
R.
, and
Vanem
,
E.
,
2021
, “
Non-stationary Extreme Value Analysis of Sea States Based on Linear Trends. Analysis of Annual Maxima Series of Significant Wave Height and Peak Period in the Mediterannean Sea
,”
Coastal Eng.
,
167
, p.
103896
.
50.
Serinaldi
,
F.
, and
Kilsby
,
C. G.
,
2015
, “
Stationarity Is Undead: Uncertainty Dominates the Distribution of Extremes
,”
Adv. Water Resourc.
,
77
, pp.
17
36
.
51.
Davis
,
R. A.
, and
Mikosch
,
T.
,
2009
, “
The Extremogram: A Correlogram for Extreme Events
,”
Bernoulli
,
15
(
4
), pp.
977
1009
.
52.
Davis
,
R. A.
,
Mikosch
,
T.
, and
Cribben
,
I.
,
2012
, “
Towards Estimating Extremal Serial Dependence via the Bootstrapped Extremogram
,”
J. Econometr.
,
170
(
1
), pp.
142
152
.
53.
Horn
,
J.-T.
,
Bitner-Gregersen
,
E.
,
Krokstad
,
J.
,
Leira
,
B. J.
, and
Amdahl
,
J.
,
2018
, “
A New Combination of Conditional Environmental Distributions
,”
Appl. Ocean. Res.
,
73
, pp.
17
26
.
54.
Haver
,
S.
, and
Winterstein
,
S.
,
2009
, “
Environmental Contour Lines: A Method for Estimating Long Term Extremes by a Short Term Analysis
,”
Trans. Soc. Naval Architects Marine Eng.
,
116
, pp.
116
127
.
55.
Huseby
,
A. B.
,
Vanem
,
E.
, and
Natvig
,
B.
,
2013
, “
A New Approach to Environmental Contours for Ocean Engineering Applications Based on Direct Monte Carlo Simulations
,”
Ocean. Eng.
,
60
, pp.
124
135
.
56.
Huseby
,
A. B.
,
Vanem
,
E.
, and
Natvig
,
B.
,
2015
, “
Alternative Environmental Contours for Structural Reliability Analysis
,”
Struct. Saf.
,
54
, pp.
32
45
.
57.
Vanem
,
E.
,
2018
, “
3-Dimensional Environmental Contours Based on a Direct Sampling Method for Structural Reliability Analysis of Ships and Offshore Structures
,”
Ships Offshore Struct.
,
14
(
1
), pp.
74
85
.
58.
Vanem
,
E.
,
2023
, “
Analysing Multivariate Extreme Conditions Using Environmental Contours and Accounting for Serial Dependence
,”
Renewable Energy
,
202
, pp.
470
482
.
You do not currently have access to this content.