Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

An upgraded direct forcing immersed boundary method is implemented in the open-source hydrodynamic framework REEF3D::CFD for simulating the six-degrees-of-freedom motions of a floating offshore wind turbine (FOWT) based on the OC5 semi-submersible design. The direct forcing method is enhanced with a new density interpolation method across the fluid–structure interface that removes unphysical spurious phenomena and ensures stable and accurate wave load calculations on floating objects. A quasi-static algorithm is used for modeling the mooring system of the OC5 platform and restraining its motions in waves. The Navier–Stokes equations are solved on a staggered structured rectilinear grid for the hydrodynamic simulations. The level-set method is used to capture the free surface of the ocean waves. A ray-casting algorithm is employed to get inside–outside information near the fluid–solid interface while maintaining the underlying Cartesian grid in the hydrodynamic domain. The performance and accuracy of the mooring algorithm are compared to the widely-used mooring model MoorDyn, which is coupled to the hydrodynamic solver in REEF3D::CFD. The study demonstrates that the enhanced direct forcing method with the integrated quasi-static mooring algorithm in REEF3D::CFD provides a robust and accurate tool, suitable for the numerical analysis of the state-of-the-art FOWT in ocean waves.

References

1.
Burmester
,
S.
, and
Vaz
,
G.
,
2020
, “
Towards Credible Cfd Simulations for Floating Offshore Wind Turbines
,”
Ocean Eng.
,
209
, p.
107237
.
2.
Vaz
,
G.
,
Jaouen
,
F.
, and
Hoekstra
,
M.
,
2009
, “
Free-Surface Viscous Flow Computations: Validation of URANS Code Fresco
,”
International Conference on Offshore Mechanics and Arctic Engineering
,
Honolulu, HI
,
May 31–June 5
, Vol. 43451, pp.
425
437
.
3.
Wang
,
Y.
,
Chen
,
H.-C.
,
Koop
,
A.
, and
Vaz
,
G.
,
2021
, “
Verification and Validation of CFD Simulations for Semi-Submersible Floating Offshore Wind Turbine Under Pitch Free-Decay Motion
,”
Ocean Eng.
,
242
, p.
109993
.
4.
Wang
,
Y.
,
Chen
,
H.-C.
,
Koop
,
A.
, and
Vaz
,
G.
,
2022
, “
Hydrodynamic Response of a FOWT Semi-Submersible Under Regular Waves Using CFD: Verification and Validation
,”
Ocean Eng.
,
258
, p.
111742
.
5.
Huang
,
H.
, and
Chen
,
H.-C.
,
2020
, “
Investigation of Mooring Damping Effects on Vortex-Induced Motion of a Deep Draft Semi-Submersible by Coupled CFD-FEM Analysis
,”
Ocean Eng.
,
210
, p.
107418
.
6.
Cheng
,
P.
,
Huang
,
Y.
, and
Wan
,
D.
,
2019
, “
A Numerical Model for Fully Coupled Aero-Hydrodynamic Analysis of Floating Offshore Wind Turbine
,”
Ocean Eng.
,
173
, pp.
183
196
.
7.
Li
,
P.
,
Cheng
,
P.
,
Wan
,
D.
, and
Xiao
,
Q.
,
2015
, “
Numerical Simulations of Wake Flows of Floating Offshore Wind Turbines by Unsteady Actuator Line Model
,”
International Workshop on Ship and Marine Hydrodynamics
,
Glasgow, UK
,
Aug. 26–28
, pp.
26
28
.
8.
Liu
,
Y.
,
Xiao
,
Q.
,
Incecik
,
A.
,
Peyrard
,
C.
, and
Wan
,
D.
,
2017
, “
Establishing a Fully Coupled CFD Analysis Tool for Floating Offshore Wind Turbines
,”
Renew. Energy
,
112
, pp.
280
301
.
9.
Tran
,
T. T.
, and
Kim
,
D. -H.
,
2016
, “
Fully Coupled Aero-Hydrodynamic Analysis of a Semi-Submersible Fowt Using a Dynamic Fluid Body Interaction Approach
,”
Renew. Energy
,
92
, pp.
244
261
.
10.
Tran
,
T. T.
, and
Kim
,
D. -H.
,
2018
, “
A CFD Study of Coupled Aerodynamic-Hydrodynamic Loads on a Semisubmersible Floating Offshore Wind Turbine
,”
Wind Energy
,
21
(
1
), pp.
70
85
.
11.
Bihs
,
H.
,
Kamath
,
A.
,
Chella
,
M. A.
,
Aggarwal
,
A.
, and
Arntsen
,
Ø. A.
,
2016
, “
A New Level Set Numerical Wave Tank With Improved Density Interpolation for Complex Wave Hydrodynamics
,”
Comput. Fluids
,
140
, pp.
191
208
.
12.
Martin
,
T.
,
Wang
,
G.
, and
Bihs
,
H.
,
2020
, “
Numerical Modelling of the Interaction of Moving Fish Nets and Fluid
, p.
V005T05A004
.
13.
Martin
,
T.
, and
Bihs
,
H.
,
2021
, “
A CFD Approach for Modelling the Fluid-Structure Interaction of Offshore Aquaculture Cages and Waves
, p.
V006T06A041
.
14.
Martin
,
T.
,
Kamath
,
A.
, and
Bihs
,
H.
,
2021
, “
Accurate Modeling of the Interaction of Constrained Floating Structures and Complex Free Surfaces Using a New Quasistatic Mooring Model
,”
Int. J. Numer. Methods Fluids
,
93
(
2
), pp.
504
526
.
15.
Wang
,
G.
,
Martin
,
T.
,
Huang
,
L.
, and
Bihs
,
H.
,
2022
, “
Numerical Investigation of the Hydrodynamics of a Submersible Steel-Frame Offshore Fish Farm in Regular Waves Using Cfd
,”
Ocean Eng.
,
256
, p.
111528
.
16.
Hall
,
M.
, and
Goupee
,
A.
,
2015
, “
Validation of a Lumped-Mass Mooring Line Model With Deepcwind Semisubmersible Model Test Data
,”
Ocean Eng.
,
104
, pp.
590
603
.
17.
Soydan
,
A.
,
Wang
,
W.
, and
Bihs
,
H.
,
2023
, “
An Improved Direct Forcing Immersed Boundary Method for Simulating Floating Objects
,”
10th International Conference on Computational Methods in Marine Engineering
,
Madrid, Spain
,
June 27–29
.
18.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
, pp.
12
49
.
19.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
,
1994
, “
A Level Set Approach for Computing Solutions to Incompressible Two-phase Flow
,”
J. Comput. Phys.
,
114
, pp.
146
159
.
20.
Peng
,
D.
,
Merriman
,
B.
,
Osher
,
S.
,
Zhao
,
H.
, and
Kang
,
M.
,
1999
, “
A PDE-Based Fast Local Level Set Method
,”
J. Comput. Phys.
,
155
, pp.
410
438
.
21.
Jiang
,
G.-S.
, and
Shu
,
C.-W.
,
1996
, “
Efficient Implementation of Weighted ENO Schemes
,”
J. Comput. Phys.
,
126
(
1
), pp.
202
228
.
22.
Jiang
,
G.
, and
Peng
,
D.
,
2000
, “
Weighted ENO Schemes for Hamilton Jacobi Equations
,”
SIAM J. Sci. Comput.
,
21
, pp.
2126
2143
.
23.
Timmermans
,
L. J.
,
Minev
,
P. D.
, and
Van De Vosse
,
F. N.
,
1996
, “
An Approximate Projection Scheme for Incompressible Flow Using Spectral Elements
,”
Int. J. Numer. Methods Fluids
,
22
(
7
), pp.
673
688
.
24.
Martin
,
T.
,
Tsarau
,
A.
, and
Bihs
,
H.
,
2021
, “
Numerical Framework for Modelling the Dynamics of Open Ocean Aquaculture Structures in Viscous Fluids
,”
Appl. Ocean Res.
,
106
, p.
102410
.
25.
Shu
,
C.
, and
Osher
,
S.
,
1988
, “
Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes
,”
J. Comput. Phys.
,
77
(
2
), pp.
439
471
.
26.
van der Vorst
,
H.
,
1992
, “
BiCGStab: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems
,”
SIAM J. Sci. Comput.
,
13
, pp.
631
644
.
27.
Ashby
,
S.
, and
Flagout
,
R.
,
1996
, “
A Parallel Mulitgrid Preconditioned Conjugate Gradient Algorithm for Groundwater Flow Simulations
,”
Nucl. Sci. Eng.
,
124
(
1
), pp.
145
159
.
28.
Yang
,
L.
,
2018
, “
One-Fluid Formulation for Fluid-Structure Interaction With Free Surface
,”
Comput. Methods Appl. Mech. Eng.
,
332
, pp.
102
135
.
29.
Bihs
,
H.
,
Kamath
,
A.
,
Alagan Chella
,
M.
, and
Pakozdi
,
C.
,
2017
, “
Complex Geometry Handling for a Cartesian Grid Based Solver
,” MekIT’17-Ninth National Conference on Computational Mechanics,
International Center for Numerical Methods in Engineering (CIMNE)
.
30.
Palm
,
J.
,
Eskilsson
,
C.
, and
Bergdahl
,
L.
,
2017
, “
An HP-Adaptive Discontinuous Galerkin Method for Modelling Snap Loads in Mooring Cables
,”
Ocean Eng.
,
144
, pp.
266
276
.
31.
Robertson
,
A. N.
,
Wendt
,
F.
,
Jonkman
,
J. M.
,
Popko
,
W.
,
Dagher
,
H.
,
Gueydon
,
S.
,
Qvist
,
J.
,
Vittori
,
F.
,
Azcona
,
J.
,
Uzunoglu
,
E.
et al.,
2017
, “
OC5 Project Phase II: Validation of Global Loads of the Deepcwind Floating Semisubmersible Wind Turbine
,”
Energy Procedia
,
137
, pp.
38
57
.
32.
Chen
,
H.
, and
Hall
,
M.
,
2022
, “
CFD Simulation of Floating Body Motion With Mooring Dynamics: Coupling Moordyn With Openfoam
,”
Appl. Ocean Res.
,
124
, p.
103210
.
You do not currently have access to this content.