A plate-bending formulation was developed from a three-dimensional solid. The plate element includes both transverse shear and normal deformations and the transverse gradient load (TGL) which is associated with the transverse normal deformation. The element utilizes reduced integration along the in-plane axes and full integration along the transverse axis. The formulation incorporates Gurson’s constitutive model for void growth and plastic deformation. An algorithm for stable solutions of the nonlinear constitutive equations is also discussed. Hourglass mode control is provided by adding a small fraction of internal force determined through full integration along the in-plane axes and reduced integration along the transverse axis. Numerical examples are presented for plastic deformation of a plate with fluid-structure interaction to examine the effects of void growth and nucleation in plastic deformation.

1.
Koziey
,
B. L.
, and
Mirza
,
F. A.
,
1997
, “
Consistent Thick Shell Element
,”
Comput. Struct.
,
65
, No.
4
, pp.
531
549
.
2.
Allman
,
D. J.
,
1988
, “
Evaluation of the Constant Strain Triangle with Drilling Rotations
,”
Int. J. Numer. Methods Eng.
,
26
, pp.
2645
2655
.
3.
Khaski
,
A. M.
, and
Soler
,
A. L.
,
1985
, “
A Finite Element for General Thick-Walled Shell Structures
,”
ASME J. Pressure Vessel Technol.
,
107
, pp.
126
133
.
4.
Cook
,
R. D.
,
1994
, “
Four-Node ’Flat’ Shell Element: Drilling Degrees of Freedom, Membrane-Bending Coupling, Warped Geometry, and Behavior
,”
Comput. Struct.
,
50
, No.
4
, pp.
549
555
.
5.
Kemp
,
B. L.
,
Cho
,
C.
, and
Lee
,
S. W.
,
1998
, “
A Four-Node Solid Shell Element Formulation With Assumed Strain
,”
Int. J. Numer. Methods Eng.
,
43
, pp.
909
924
.
6.
Zhu
,
Y.
, and
Zacharia
,
T.
,
1996
, “
A New One-Point Quadrature, Quadrilateral Shell Element With Drilling Degrees of Freedom
,”
Comput. Methods Appl. Mech. Eng.
,
136
, pp.
165
203
.
7.
Zeng
,
Q.
, and
Comescure
,
A.
,
1998
, “
A New One-Point Quadrature, General Non-Linear Quadrilateral Shell Element with Physical Stabilization
,”
Int. J. Numer. Methods Eng.
,
42
, pp.
1307
1338
.
8.
Rengarajan
,
G.
,
Aminpour
,
M. A.
, and
Knight
, Jr.,
N. F.
,
1995
, “
Improved Assumed-Stress Hybrid Shell Element with Drilling Degrees of Freedom for Linear Stress, Buckling and Free Vibration Analysis
,”
Int. J. Numer. Methods Eng.
,
38
, pp.
1917
1943
.
9.
Briassoulis
,
D.
,
1989
, “
The C0 Shell Plate and Beam Elements Freed from their Deficiencies
,”
Comput. Methods Appl. Mech. Eng.
,
72
, pp.
243
266
.
10.
Ibrahimbegovic
,
A.
,
Taylor
,
R. L.
, and
Wilson
,
E. L.
,
1990
, “
A Robust Quadrilateral Membrane Finite Element with Drilling Degrees of Freedom
,”
Int. J. Numer. Methods Eng.
,
30
, pp.
445
457
.
11.
Key
,
S. W.
, and
Hoff
,
C. C.
,
1995
, “
An Improved Constant Membrane and Bending Stress Shell Element for Explicit Transient Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
124
, pp.
33
47
.
12.
Lay
,
K. S.
,
1993
, “
Shell Finite Element Formulated on Shell Middle Surface
,”
J. Eng. Mech.
,
119
, No.
10
, pp.
1973
1992
.
13.
Addessio
,
F. L.
,
Johnson
,
J. N.
, and
Maudlin
,
P. J.
,
1993
, “
The Effect of Void Growth on Taylor Cylinder Impact Experiments
,”
J. Appl. Phys.
,
73
, No.
11
, pp.
7288
7297
.
14.
Hancock
,
J. W.
, and
Thomson
,
R. D.
,
1985
, “
Strain and Stress Concentrations in Ductile Fracture by Void Nucleation, Growth and Coalescence
,”
Mater. Sci. Technol.
,
1
, pp.
684
690
.
15.
Chu
,
C. C.
, and
Needleman
,
A.
,
1980
, “
Void Nucleation Effects in Biaxially Stretched Sheets
,”
ASME J. Eng. Mater. Technol.
,
102
, pp.
249
256
.
16.
Tvergaard
,
V.
,
1981
, “
Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions
,”
Int. J. Fract.
,
17
, No.
4
, pp.
389
406
.
17.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Materials
,”
ASME J. Eng. Mater. Technol.
,
99
, pp.
2
15
.
18.
Nagtegaal
,
J. C.
,
Parks
,
D. M.
, and
Rice
,
J. R.
,
1974
, “
On Numerically Accurate Finite Element Solutions in the Fully Plastic Range
,”
Comput. Methods Appl. Mech. Eng.
,
4
, pp.
153
177
.
19.
Shi
,
G.
, and
Voyiadjis
,
G. Z.
,
1993
, “
A Computational Model for FE Ductile Plastic Damage Analysis and Plate Bending
,”
J. Appl. Mech.
,
60
, pp.
749
758
.
20.
Lee
,
J. H.
, and
Zhang
,
Y.
,
1994
, “
A Finite-Element Work-Hardening Plasticity Model of the Uniaxial Compression and Subsequent Failure of Porous Cylinders Including Effects of Void Nucleation and Growth—Part I: Plastic Flow and Damage
,”
ASME J. Eng. Mater. Technol.
,
116
, pp.
69
79
.
21.
Aravas
,
N.
,
1987
, “
On the Numerical Integration of a Class of Pressure-Dependent Plasticity Models
,”
Int. J. Numer. Methods Eng.
,
24
, pp.
1395
1416
.
22.
Essenburg, F., 1975, “On the Significance of the Inclusion of the Effect of Transverse Normal Strain in Problems Involving Beams With Surface Constraints,” J. Appl. Mech., Mar., pp. 127–132.
23.
Belytschko
,
T.
,
Tsay
,
C. S.
, and
Liu
,
W. K.
,
1981
, “
A Stabilization Matrix for the Bilinear Mindlin Plate Element
,”
Comput. Methods Appl. Mech. Eng.
,
29
, pp.
313
327
.
You do not currently have access to this content.