This work explores the possibilities of using functionally graded material (FGM) layers to reduce normal and shear stress gradients due to internal pressure and thermal loadings at the interface of a two-layered wall pressure vessel. The two walls are made of an internal thin metallic layer (titanium used as a liner to avoid a chemical/physical reaction between the gas and the external layer) and an external thick layer (carbon fiber used as a structural restraint). Two main geometrical elements are investigated: a cylindrical shell and a spherical panel. The shell analysis has been made by referring to mixed layerwise theories, which lead to a three-dimensional description of the stress/strain fields in the thickness shell direction; results related to the first order shear deformation theory are given for comparison purposes. It has been concluded that it is convenient to use FGM layers to reduce shear and normal stress gradients at the interfaces. Furthermore, the FGM layers lead to benefits as far as buckling load is concerned; lower values of in-plane shear and longitudinal compressive stresses are, in fact, obtained with respect to a pure two-layered wall.

1.
Chattopadhyay
,
S.
, 2004,
Pressure Vessels: Design and Practice
,
CRC
,
New York
.
2.
Bushnell
,
D.
, 1985,
Computerized Buckling Analysis for Shells
,
Lockheed Palo Alto Research Laboratory
,
Palo Alto
.
3.
Zhang
,
S. H.
,
Jiang
,
L.
,
Wang
,
B. L.
, and
Wang
,
Z. R.
, 1996, “
Finite-Element Analysis of the Integral Hydro-Bulge Forming of Double-Layer Gap Spherical Vessels
,”
Int. J. Pressure Vessels Piping
0308-0161,
68
, pp.
161
167
.
4.
Zhang
,
S. H.
,
Wang
,
B. L.
,
Shang
,
Y. L.
,
Kong
,
X. R.
,
Hu
,
J. D.
, and
Wang
,
Z. R.
, 1996, “
Three-Dimensional Finite Element Simulation of the Integral Hydrobulge Forming of a Spherical LPG Tank
,”
Int. J. Pressure Vessels Piping
0308-0161,
65
, pp.
47
52
.
5.
Baum
,
M. R.
, 1995, “
Rupture of a Gas-Pressurized Cylindrical Vessel: The Velocity of a Detached End-Cap
,”
J. Loss Prev. Process Ind.
0950-4230,
8
, pp.
149
161
.
6.
Khan
,
R.
, and
Uddin
,
W.
, 1995, “
The Stability of Conical End Caps With Spherical Tips as End Closures Form Pressure Vessels
,”
Int. J. Pressure Vessels Piping
0308-0161,
64
, pp.
11
16
.
7.
Tafreshi
,
A.
, 1997, “
Numerical Analysis of Thin Torispherical End Closures
,”
Int. J. Pressure Vessels Piping
0308-0161,
71
, pp.
77
88
.
8.
Mackerle
,
J.
, 1999, “
Finite Elements in the Analysis of Pressure Vessels and Piping, an Addendum: A Bibliography (1996–1998)
,”
Int. J. Pressure Vessels Piping
0308-0161,
76
, pp.
461
485
.
9.
Mackerle
,
J.
, 2002, “
Finite Elements in the Analysis of Pressure Vessels and Piping, an Addendum: A Bibliography (1996–1998)
,”
Int. J. Pressure Vessels Piping
0308-0161,
79
, pp.
1
26
.
10.
Mackerle
,
J.
, 2005, “
Finite Elements in the Analysis of Pressure Vessels and Piping, an Addendum: A Bibliography (2001–2004)
,”
Int. J. Pressure Vessels Piping
0308-0161,
82
, pp.
571
592
.
11.
Li
,
Z.
, and
Gobbi
,
S. L.
, 1997, “
Laser Welding for Lightweight Structures
,”
J. Mater. Process. Technol.
0924-0136,
70
, pp.
137
144
.
12.
Teng
,
J. G.
, and
Lin
,
X.
, 2005, “
Fabrication of Small Models of Large Cylinders With Extensive Welding for Buckling Experiments
,”
Thin-Walled Struct.
0263-8231,
43
, pp.
1091
1114
.
13.
Jones
,
D. T.
,
Jones
,
I. A.
, and
Middleton
,
V.
, 1996, “
Improving Composite Lay-Up for Non-Spherical Filament-Wound Pressure Vessels
,”
Composites, Part A
1359-835X,
27
, pp.
311
317
.
14.
Cohen
,
D.
, 1997, “
Influence of Filament Winding Parameters on Composite Vessel Quality and Strength
,”
Composites, Part A
1359-835X,
28A
, pp.
1034
1047
.
15.
Cohen
,
D.
,
Mantell
,
S. C.
, and
Zhao
,
L.
, 2001, “
The Effect of Fiber Volume Fraction on Filament Wound Composite Pressure Vessel Strength
,”
Composites, Part B
1359-8368,
32
, pp.
413
429
.
16.
Koizumi
,
M.
, 1993, “
The Concept of FGM
,”
Ceram. Trans. Funct. Graded Mater.
,
34
, pp.
3
10
.
17.
Suresh
,
S.
, and
Mortensen
,
A.
, 1998,
Fundamentals of Functionally Graded Materials
,
Barnes & Noble
,
New York
.
18.
Brischetto
,
S.
,
Leetsch
,
R.
,
Carrera
,
E.
,
Wallmersperger
,
T.
, and
Kröplin
,
B.
, 2008, “
Thermo-Mechanical Bending of Functionally Graded Plates
,”
J. Therm. Stresses
0149-5739,
31
, pp.
286
308
.
19.
Birman
,
V.
, and
Bird
,
L. W.
, 2007, “
Modeling and Analysis of Functionally Graded Materials and Structures
,”
Appl. Mech. Rev.
0003-6900,
60
, pp.
195
217
.
20.
Carrera
,
E.
, 1999, “
Multilayered Shell Theories Accounting for Layerwise Mixed Description, Part 1: Governing Equations
,”
AIAA J.
0001-1452,
37
(
9
), pp.
1107
1116
21.
Carrera
,
E.
, 1999, “
Multilayered Shell Theories Accounting for Layerwise Mixed Description, Part 2: Numerical Evaluations
,”
AIAA J.
0001-1452,
37
(
9
), pp.
1117
1124
.
22.
Carrera
,
E.
, 2001, “
Developments, Ideas and Evaluations Based Upon Reissner’s Mixed Variational Theorem in the Modeling of Multilayered Plates and Shells
,”
Appl. Mech. Rev.
0003-6900,
54
(
4
), pp.
301
329
.
23.
Carrera
,
E.
, 2003, “
Theories and Finite Elements for Multilayered Plates and Shells: A Unified Compact Formulation With Numerical Assessments and Benchmarks
,”
Arch. Comput. Methods Eng.
1134-3060,
10
, pp.
215
296
.
24.
Carrera
,
E.
,
Brischetto
,
S.
, and
Robaldo
,
A.
, 2008, “
Variable Kinematic Model for the Analysis of Functionally Graded Material Plates
,”
AIAA J.
0001-1452,
46
, pp.
194
203
.
25.
Brischetto
,
S.
, and
Carrera
,
E.
, 2010, “
Importance of Higher Order Modes and Refined Theories in Free Vibration Analysis of Composite Plates
,”
ASME J. Appl. Mech.
0021-8936,
77
, p.
011013
.
26.
Reddy
,
J. N.
, 2004,
Mechanics of Laminated Composite Plates, Theory and Analysis
,
CRC
,
New York
.
27.
Washizu
,
K.
, 1968,
Variational Methods in Elasticity and Plasticity
,
Pergamon
,
New York
.
28.
Reissner
,
E.
, 1984, “
On a Certain Mixed Variational Theory and a Proposed Application
,”
Int. J. Numer. Methods Eng.
0029-5981,
20
, pp.
1366
1368
.
29.
Carrera
,
E.
, 1995, “
A Class of Two Dimensional Theories for Multilayered Plates Analysis
,”
Atti Accademia delle Scienze di Torino, Memorie Scienze Fisiche.
,
19–20
, pp.
49
87
.
30.
Carrera
,
E.
, 2000, “
An Assessment of Mixed and Classical Theories for Thermal Stress Analysis of Orthotropic Multilayered Plates
,”
J. Therm. Stresses
0149-5739,
23
, pp.
797
831
.
31.
Carrera
,
E.
, 2002, “
Temperature Profile Influence on Layered Plates Response Considering Classical and Advanced Theories
,”
AIAA J.
0001-1452,
40
, pp.
1885
1896
.
32.
Cinefra
,
M.
,
Brischetto
,
S.
,
Carrera
,
E.
, and
Beloueattar
,
S.
, 2010, “
Thermo-Mechanical Analysis of Functionally Graded Shells
,”
J. Therm. Stresses
0149-5739,
33
, pp.
942
963
.
33.
Carrera
,
E.
, 1999, “
A Study of Transverse Normal Stress Effect on Vibration of Multilayered Plates and Shells
,”
J. Sound Vib.
0022-460X,
225
(
5
), pp.
803
829
.
You do not currently have access to this content.