In this paper, a cyclic-plasticity-based fully mechanistic fatigue modeling approach is presented. This is based on time-dependent stress–strain evolution of the material over the entire fatigue life rather than just based on the end of live information typically used for empirical S∼N curve-based fatigue evaluation approaches. Previously, we presented constant amplitude fatigue test based related material models for 316 stainless steel (SS) base, 508 low alloy steel base, and 316 SS-316 SS weld which are used in nuclear reactor components such as pressure vessels, nozzles, and surge line pipes. However, we found that constant amplitude fatigue data-based models have limitation in capturing the stress–strain evolution under arbitrary fatigue loading. To address the aforementioned limitation, in this paper, we present a more advanced approach that can be used for modeling the cyclic stress–strain evolution and fatigue life not only under constant amplitude but also under any arbitrary (random/variable) fatigue loading. The related material model and analytical model results are presented for 316 SS base metal. Two methodologies (either based on time/cycle or based on accumulated plastic strain energy (APSE)) to track the material parameters at a given time/cycle are discussed and associated analytical model results are presented. From the material model and analytical cyclic plasticity model results, it is found that the proposed cyclic plasticity model can predict all the important stages of material behavior during the entire fatigue life of the specimens with more than 90% accuracy.

References

1.
ASME,
2013
, “Section III, Division 1, Rules for Construction of Nuclear Facility Components,” American Society of Mechanical Engineers, New York, Standard No.
BPVC-III NB-2013
.https://www.asme.org/products/courses/bpv-code-section-iii-division-1-rules
2.
Chopra, O. K., and
Shack
,
W. J.
,
2007
, “Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials,” Office of Nuclear Regulatory Research, U.S. NRC Report, No.
NUREG/CR-6909
.https://www.nrc.gov/docs/ML0706/ML070660620.pdf
3.
BSI
,
2012
, “Unfired Pressure Vessels—Part 3: Design,” The British Standards Institution, Washington, DC, Standard No.
EN 13445-3/prA4
.https://www.din.de/en/getting-involved/standards-committees/fnca/projects/wdc-proj:din21:110688055
4.
British Energy Generation
,
2003
, “Assessment Procedure for the High Temperature Response of Structures,” British Energy Generation, Glouceaterahire, UK.
5.
JSME,
2012
, “Codes for Nuclear Power Generation Facilities—Rules on Design and Construction for Nuclear Power Plants,” Japan Society of Mechanical Engineers, Tokyo, Japan, Standard No. JSME S NC1-2012.
6.
Miner
,
M. A.
,
1945
, “
Cumulative Fatigue Damage
,”
ASME J. Appl. Mech.
,
12
(3), pp.
A159
A164
.
7.
Kamaya
,
M.
, and
Kawakubo
,
M.
,
2015
, “
Loading Sequence Effect on Fatigue Life of Type 316 Stainless Steel
,”
Int. J Fatigue
,
81
, pp.
10
20
.
8.
Kamaya
,
M.
, and
Kawakubo
,
M.
,
2010
, “
Damage Due to Low-Cycle Fatigue of Type 316 Stainless Steel: Fatigue Life Under Variable Loading and Influence of Internal Cracks
,”
Nippon Kikai Gakkai Ronbunshu, A Hen
,
76
(768), pp.
1048
1058
.https://inis.iaea.org/search/search.aspx?orig_q=RN:42009248
9.
Colin
,
J.
, and
Fatemi
,
A.
,
2010
, “
Variable Amplitude Cyclic Deformation and Fatigue Behaviour of Stainless Steel 304 L Including Step, Periodic, and Random Loadings
,”
Fatigue Fract. Eng. Mater. Struct.
,
33
(4), pp.
205
220
.
10.
Fissolo
,
A.
, and
Stelmaszyk
,
J. M.
,
2009
, “A First Investigation on Cumulative Fatigue Life for a Type 304-L Stainless Steel Used for Pressure Water Reactor,”
ASME
Paper No. PVP2009-77156.
11.
Ozeki
,
H.
,
Hasunuma
,
S.
, and
Ogawa
,
T.
,
2013
, “
The Effect of Variable Amplitude Strain Conditions on Low Cycle Fatigue Strength of Stainless Steel SUS316 L
,”
J. Soc. Mater. Sci.
,
62
, pp.
201
206
.
12.
Bernard-Connolly
,
M.
,
Bui-Quoc
,
T.
, and
Biron
,
A.
,
1983
, “
Multilevel Strain Controlled Fatigue on a Type 304 Stainless Steel
,”
J. Eng. Mater. Tech.
,
105
(3), pp.
188
94
.
13.
Solin
,
J. P.
,
2006
, “Fatigue of Stabilized SS and 316 NG Alloy in PWR Environment,”
ASME
Paper No. PVP2006-ICPVT-11-93833.
14.
Ranganath
,
S.
, and
Mehta
,
H. S.
,
2015
, “An Examination of the Role of the Assumed Young's Modulus Value at the High Cycle End of ASME Code Fatigue Curve for Stainless Steels,”
ASME
Paper No. PVP2015-45619.
15.
Mehta
,
H. S.
,
Griesbach
,
T. J.
,
Sommerville
,
D. V.
, and
Stevens
,
G. L.
,
2011
, “Additional Improvements to Appendix G of ASME Section XI Code for Nozzles,”
ASME
Paper No. PVP2011-57015.
16.
Wilhelm
,
P.
,
Steinmann
,
P.
, and
Rudolph
,
J.
,
2015
, “Fatigue Strain–Life Behavior of Austenitic Stainless Steels in Pressurized Water Reactor Environments,”
ASME
Paper No. PVP2015-45011.
17.
Roiko
,
A.
,
Solin
,
J. P.
, and
Murakami
,
Y.
,
2014
, “
Inclined Defects and Their Effect on the Fatigue Limit and Small Crack Growth
,”
MATEC Web Conf.
,
12
, p.
07002
.
18.
Seppänen
,
T.
,
Alhainen
,
J.
,
Arilahti
,
E.
, and
Solin
,
J.
,
2017
, “Strain Waveform Effects for Low Cycle Fatigue in Simulated PWR Water,”
ASME
Paper No. PVP2017-65374.
19.
Platts
,
N.
,
Tice
,
D. R.
, and
Nicholls
,
J.
,
2015
, “Study of Fatigue Initiation of Austenitic Stainless Steel in a High Temperature Water Environment and in Air Using Blunt Notch Compact Tension Specimens,”
ASME
Paper No. PVP2015-45844.
20.
Shi
,
J.
,
Wei
,
L.
,
Faidy
,
C.
,
Wasylyk
,
A.
, and
Prinja
,
N.
,
2016
, “A Comparison of Different Design Codes on Fatigue Life Assessment Methods,”
ASME
Paper No. PVP2016-63040.
21.
Shit
,
J.
,
Dhar
,
S.
, and
Acharyya
,
S.
,
2013
, “
Modeling and Finite Element Simulation of Low Cycle Fatigue Behaviour of 316 SS
,”
Proc. Eng.
,
55
, pp.
774
779
.
22.
Dafalias
,
Y. F.
, and
Popov
,
E. P.
,
1975
, “
A Model of Nonlinearly Hardening Materials for Complex Loading
,”
Acta Mech.
,
21
(3), pp.
173
192
.
23.
Armstrong
,
P. J.
, and
Frederick
,
C. O.
,
1966
,
A Mathematical Representation of the Multiaxial Bauschinger Effect
,
Central Electricity Generating Board and Berkeley Nuclear Laboratories, Gloucestershire, UK
.
24.
Chaboche
,
J. L.
,
1986
, “
Time-Independent Constitutive Theories for Cyclic Plasticity
,”
Int. J. Plast.
,
2
(2), pp.
149
188
.
25.
Chaboche
,
J. L.
,
1991
, “
On Some Modifications of Kinematic Hardening to Improve the Description of Ratchetting Effects
,”
Int. J. Plast.
,
7
(7), pp.
661
678
.
26.
Chaboche
,
J. L.
, and
Rousselier
,
G.
,
1983
, “
On the Plasticity and Viscoplasticity Constitutive Equations—Part II: Application of Internal Variable Concepts to the 316 Stainless Steel
,”
ASME J. Pressure Vessel Technol.
,
105
(
2
), pp.
159
164
.
27.
Ohno
,
N.
,
Takahashi
,
Y. Y.
, and
Kuwabara
,
K. K.
,
1989
, “
Constitutive Modeling of Anisothermal Cyclic Plasticity of 304 Stainless Steel
,”
ASME J. Eng. Mater. Technol.
,
111
(
1
), pp.
106
114
.
28.
Syed
,
S. M.
,
Hassan
,
T.
, and
Corona
,
E.
,
2008
, “
Evaluation of Cyclic Plasticity Models in Ratcheting Simulation of Straight Pipes Under Cyclic Bending and Steady Internal Pressure
,”
Int. J Plast.
,
24
(10), pp.
1756
1791
.
29.
Zhang
,
K.
, and
Aktaa
,
J.
,
2016
, “
Characterization and Modeling of the Ratcheting Behavior of the Ferritic–Martensitic Steel P91
,”
J. Nucl. Mater.
,
472
, pp.
227
239
.
30.
Rudolph
,
J.
,
Gilman
,
T.
,
Weitze
,
B.
,
Willuweit
,
A.
, and
Kalnins
,
A.
,
2016
, “
Using Nonlinear Kinematic Hardening Material Models for Elastic–Plastic Ratcheting Analysis
,”
ASME J. Pressure Vessel Technol.
,
138
(5), p.
051205
.
31.
Kang
,
G.
,
Ohno
,
N.
, and
Nebu
,
A.
,
2003
, “
Constitutive Modeling of Strain Range Dependent Cyclic Hardening
,”
Int. J. Plast.
,
19
(1), pp.
1801
1819
.
32.
Ohno
,
N.
, and
Wang
,
J. D.
,
1993
, “
Kinematic Hardening Rules With Critical State of Dynamic Recovery—Part I: Formulation and Basic Features for Ratchetting Behavior
,”
Int. J. Plast.
,
9
(3), pp.
375
390
.
33.
Sumit
,
G.
,
Gupta
,
S. K.
,
Sivaprasad
,
S.
,
Tarafder
,
S.
,
Bhasin
,
V.
,
Vaze
,
K. K.
, and
Ghosh
,
A. K.
,
2013
, “
Low Cycle Fatigue and Cyclic Plasticity Behavior of Indian PHWR/AHWR Primary Piping Material
,”
Proc. Eng.
,
55
, pp.
136
143
.
34.
Mohanty
,
S.
,
Soppet
,
W. K.
,
Majumdar
,
S.
, and
Natesan
,
K.
,
2015
, “Effect of Pressurized Water Reactor Environment on Material Parameters of 316 Stainless Steel: A Cyclic Plasticity Based Evolutionary Material Modeling Approach,”
ASME
Paper No. PVP2015-45701.
35.
Mohanty
,
S.
,
Soppet
,
W. K.
,
Majumdar
,
S.
, and
Natesan
,
K.
,
2016
, “
Chaboche-Based Cyclic Material Hardening Models for 316 SS–316 SS Weld Under in-Air and Pressurized Water Reactor Water Conditions
,”
Nucl. Eng. Des.
,
305
, pp.
524
530
.
36.
Mohanty
,
S.
,
Soppet
,
W. K.
,
Majumdar
,
S.
, and
Natesan
,
K.
,
2015
, “Tensile and Fatigue Testing and Material Hardening Model Development for 508 LAS Base Metal and 316 SS Similar Metal Weld Under In-air and PWR Primary Loop Water Conditions,” Argonne National Laboratory, Lemont, IL, Report No.
ANL/LWRS-15/02
.
37.
Mohanty
,
S.
,
Soppet
,
W. K.
,
Majumdar
,
S.
, and
Natesan
,
K.
,
2016
, “
In-Air and Pressurized Water Reactor Environment Fatigue Experiments of 316 Stainless Steel to Study the Effect of Environment on Cyclic Hardening
,”
J. Nucl. Mater.
,
473
, pp.
290
299
.
38.
Mohanty
,
S.
,
Barua
,
B.
,
Soppet
,
W. K.
,
Majumdar
,
S.
, and
Natesan
,
K.
,
2016
, “Study the Cyclic Plasticity Behavior of 508 LAS Under Constant, Variable and Grid-Load-Following Loading Cycles for Fatigue Evaluation of PWR Components,” Argonne National Laboratory, Lemont, IL, Report No.
ANL/LWRS-16/03
.http://www.ipd.anl.gov/anlpubs/2016/10/130694.pdf
39.
Mohanty
,
S.
,
Soppet
,
W. K.
,
Barua
,
B.
,
Majumdar
,
S.
, and
Natesan
,
K.
,
2017
, “
Modeling the Cycle-Dependent Material Hardening Behavior of 508 Low Alloy Steel
,”
Exp. Mech.
,
57
(6), pp.
847
855
.
40.
Barua
,
B.
,
Mohanty
,
S.
,
Soppet
,
W. K.
,
Majumdar
,
S.
, and
Natesan
,
K.
,
2017
, “Fatigue Modeling of 508 LAS Under Variable Amplitude Loading: A Mechanistic Based Analytical Approach,”
ASME
Paper No. PVP2017-65876.
41.
Wilkins
,
M. L.
,
1963
, “Calculation of Elastic-plastic Flow,” California University Livermore Radiation Lab, Livermore, CA, Report No. UCRL-7322.
42.
Koh
,
S. K.
,
2002
, “
Fatigue Damage Evaluation of a High Pressure Tube Steel Using Cyclic Strain Energy Density
,”
Int. J. Pressure Vessel Piping
,
79
(12), pp.
791
798
.
43.
Lin
,
X.
, and
Halcheng
,
G.
,
1998
, “
Plastic Energy Dissipation Model for Lifetime Prediction of Zirconium and Zircaloy-4 Fatigued at RT and 400 C
,”
ASME J. Eng. Mater. Technol.
,
120
(2), pp.
114
118
.
44.
Łagoda
,
T.
,
2001
, “
Energy Models for Fatigue Life Estimation Under Uniaxial Random Loading—Part I: The Model Elaboration
,”
Int. J. Fatigue
,
23
(6), pp.
467
480
.
45.
Fekete
,
B.
,
2015
, “
New Energy-Based Low Cycle Fatigue Model for Reactor Steels
,”
Mater. Des.
,
79
, pp.
42
52
.
46.
Sarkar
,
S.
,
Kumawat
,
B. K.
, and
Chakravartty
,
J. K.
,
2015
, “
Low Cycle Fatigue Behavior of a Ferritic Reactor Pressure Vessel Steel
,”
J. Nucl. Mater.
,
462
, pp.
273
279
.
47.
Kadhim
,
A. N.
,
Mustafa
,
M.
, and
Varvani-Farahani
,
A.
,
2015
, “
Fatigue Life Prediction of Low−Alloy Steel Samples Undergoing Uniaxial Random Block Loading Histories Based on Different Energy−Based Damage Descriptions
,”
Fatigue Frac. Eng. Mater. Struc.
,
38
(1), pp.
69
79
.
48.
Morrow
,
J.
,
1965
, “Cyclic Plastic Strain Energy and Fatigue of Metals,”
ASTM International
, West Conshohocken, PA, Standard No.
STP378
.
49.
Halford
,
G. R.
,
1966
, “
The Energy Required for Fatigue (Plastic Strain Hysteresis Energy Required for Fatigue in Ferrous and Nonferrous Metals)
,”
J. Mater.
,
1
, pp.
3
18
.
50.
Leis
,
B. N.
,
1977
, “
An Energy-Based Fatigue and Creep-Fatigue Damage Parameter
,”
ASME J. Pressure Vessel Technol.
,
99
(4), pp.
524
533
.
51.
Mohanty
,
S.
,
Soppet
,
W. K.
,
Majumdar
,
S.
, and
Natesan
,
K.
,
2014
, “Environmental Effect on Evolutionary Cyclic Plasticity Material Parameters of 316 Stainless Steel: An Experimental & Material Modeling Approach,” Argonne National Laboratory, Lemont, IL, Report, No.
ANL/LWRS-14/01
.http://www.ipd.anl.gov/anlpubs/2014/10/79424.pdf
52.
Mohanty
,
S.
,
Soppet
,
W. K.
,
Majumdar
,
S.
, and
Natesan
,
K.
,
2013
, “Status Report on Assessment of Environmentally Assisted Fatigue for LWR Extended Service Conditions,” Argonne National Laboratory, Lemont, IL, Report No.
ANL/LWRS–13/3
.http://www.ipd.anl.gov/anlpubs/2014/03/77742.pdf
You do not currently have access to this content.