Abstract

An air vessel is a simple and effective device for protecting a pipeline system from abnormal pressure events. In order to design and select a suitable air vessel, analysis of the pipeline system is necessary. A quasi-2D approach can overcome some of the limitations of the conventional one-dimensional transient flow analysis method. However, only a few hydraulic components can be implemented in the quasi-2D approach. In this study, we propose a methodology for applying an air vessel in the quasi-2D model. An experimental study is performed for validating the proposed model. Although an identical approach involving an accumulator model is used to model the air vessel as in the 1D model, the quasi-2D model shows improved performance for the experimental system.

References

1.
Boulos
,
P. F.
,
Lansey
,
K. E.
, and
Karney
,
B. W.
,
2004
,
Comprehensive Water Distribution Systems Analysis Handbook for Engineers and Planners
,
MWH SOFT
,
Pasadena, CA
.
2.
Wylie
,
E. B.
, and
Streeter
,
V. L.
,
1993
,
Fluid Transients in System
,
Prentice Hall
,
Upper Saddle River, NJ
.
3.
Ghidaoui
,
M. S.
,
Zhao
,
M.
,
McInni
,
D. A.
, and
Axworthy
,
D. H.
,
2005
, “
A Review of Water Hammer Theory and Practice
,”
ASME Appl. Mech. Rev.
,
58
(
1
), pp.
49
75
.10.1115/1.1828050
4.
Holombe
,
E. L.
, and
Pouleau
,
W. T.
,
1967
, “
The Effect of Viscous Shear on Transients on Liquid Line
,”
ASME J. Basic Eng.
,
89
(
1
), pp.
174
180
.10.1115/1.3609549
5.
Vardy
,
A. E.
,
1980
, “
Unsteady Flow: Fact and Friction
,”
Proceedings of the Third International Conference on Pressure Surges
,”
BHRA, Canterbury, UK
, Mar. 25–27, pp.
15
26
.
6.
Bergant
,
A.
, and
Simpson
,
A. R.
,
1994
, “
Estimating Unsteady Friction in Transient Cavitating Pipe Flow
,”
Proceedings of the Second International Conference on Water Pipeline System
, Edinburgh, UK, May 24–26, pp.
3
16
.https://www.researchgate.net/publication/256097753_Estimating_unsteady_friction_in_transient_cavitating_pipe_flow
7.
Bergant
,
A.
,
Ross Simpson
,
A.
, and
Vìtkovsk[Ygrave]
,
J.
,
2001
, “
Development of Unsteady Pipe Flow Friction Modeling
,”
J Hydraul. Res., IAHR
,
39
(
3
), pp.
249
257
.10.1080/00221680109499828
8.
Brunone
,
B.
,
Golia
,
U. M.
, and
Greco
,
M.
,
1995
, “
Effects of Two-Dimensionality on Pipe Transients Modeling
,”
ASCE J Hydraul. Eng.
,
121
(
12
), pp.
906
912
.10.1061/(ASCE)0733-9429(1995)121:12(906)
9.
Daily
,
J. W.
,
Hankey
,
W. L.
,
Olive
,
R. E.
, and
Jordaan
,
J. M.
,
1956
, “
Resistance Coefficients for Accelerated and Decelerated Flows Through Smooth Tubes and Orifices
,”
Trans. ASME
,
78
, pp.
1071
1077
.https://apps.dtic.mil/dtic/tr/fulltext/u2/a280851.pdf
10.
Carstens
,
M. R.
, and
Roller
,
J. E.
,
1959
, “
Boundary Shear Stress in Unsteady Turbulent Flow
,”
J. Hydraul. Div., Proc. ASCE
,
85
(
2
), pp.
67
81
. https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0011565
11.
Zielke
,
W.
,
1968
, “
Frequency Dependent Friction in Transient Pipe Flow
,”
ASME J. Basic Eng.
,
90
(
1
), pp.
109
115
.10.1115/1.3605049
12.
Trikha
,
A. K.
,
1975
, “
An Efficient Method for Simulating Frequency Dependent Friction in Transient Liquid Flow
,”
ASME J. Fluids Eng.
,
97
(
1
), pp.
97
105
.10.1115/1.3447224
13.
Brown
,
F. T.
,
1984
, “
On Weighting Functions for the Simulation of Unsteady Turbulent Flow
,” Forum on Unsteady Flow, ASME, New Orleans, LA, Dec. 9–14, FED-Vol. 15, pp. 26–28
.
14.
Vardy
,
A. E.
,
1992
, “
Approximating Unsteady Friction at High Reynolds Numbers, International Conference on Unsteady Flow and Fluid Transients
,” Hydraulic Research Wallingford, Durham, UK, Sept. 29–Oct. 1, pp.
21
29
.
15.
Vardy
,
A. E.
,
Hwang
,
K. L.
, and
Brown
,
J. M.
,
1993
, “
A Weighting Function Model of Transient Turbulent Pipe Friction
,”
J Hydraul. Res., IAHR
,
31
(
4
), pp.
533
548
.10.1080/00221689309498876
16.
Bratland
,
O.
,
1986
, “
Frequency-Dependent Friction and Radial Kinetic Energy Variation in Transient Pipe Flow
,”
Proceeding of the Fifth International Conference on Pressure Surges
, BHRA, Hannover, Germany, Sept. 22–24, pp.
95
101
.
17.
Vardy
,
A. E.
, and
Hwang
,
K. L.
,
1991
, “
A Characteristic Model of Transient Friction in Pipeline
,”
J. Hydrual. Res.
,
29
(
5
), pp.
669
685
.10.1080/00221689109498983
18.
Pezzinga
,
G.
,
1999
, “
Quasi-2D Model for Unsteady Flow in Pipe Networks
,”
J. Hydraul. Eng.
,
125
(
7
), pp.
676
685
.10.1061/(ASCE)0733-9429(1999)125:7(676)
19.
Wahba
,
E. M.
,
2009
, “
Turbulence Modeling for Two-Dimensional Water Hammer Simulations in the Low Reynolds Number Range
,”
Comput. Fluids
,
38
(
9
), pp.
1763
1770
.10.1016/j.compfluid.2009.03.007
20.
Zhao
,
M.
, and
Ghidaoui
,
M. S.
,
2003
, “
Efficient Quasi-Two-Dimensional Model for Water Hammer Problems
,”
J. Hydraul. Eng.,
129
(
12
), pp.
1007
1013
.https://ascelibrary.org/doi/10.1061/%28ASCE%290733-9429%282003%29129%3A12%281007%29
21.
Naser
,
G.
, and
Karney
,
B. W.
,
2008
, “
A Transient 2-D Water Quality Model for Pipeline Systems
,”
J. Hydraul. Res.
,
46
(
4
), pp.
516
525
.10.3826/jhr.2008.3015
22.
Nixon
,
W.
,
Karney
,
B.
,
Zhao
,
M.
,
Ghidaoui
,
M. S.
, and
Naser
,
G.
,
2004
, “
Boundary Condition Representation and Behaviour in Transient 2D Models
,”
Ninth International Conference on Pressure Surges
, Chester, UK, Mar. 24–26, pp.
539
553
.
23.
Kim
,
H. J.
, and
Kim
,
S. H.
,
2018
, “
A Generalized Procedure for Pipeline Hydraulic Components in Quasi- Two-Dimensional Unsteady Flow Analysis
,”
ASME J. Fluids Eng.
,
141
(
6
), p.
061107
.10.1115/1.4042094
24.
Salem
,
K. M.
,
Mashina
,
M. E.
, and
Dekam
,
E. I.
,
2017
, “
Sizing Air Vessels for Water Hammer Protection in Water Pipelines
,”
J. Eng. Res.
,
23
, pp.
47
62
. http://www.jer.ly/PDF/Vol-23-2017/JER-04-23.pdf
25.
Alexander
,
J.
,
Lee
,
P. J.
,
Davidson
,
M.
,
Duan
,
H. F.
,
Li
,
Z.
,
Murch
,
R.
,
Meniconi
,
S.
, and
Brunone
,
B.
,
2019
, “
Experimental Validation of Existing Numerical Models for the Interaction of Fluid Transients With in-Line Air Pockets
,”
ASME J. Fluids Eng.
,
141
(
12
), p.
121101
.10.1115/1.4043776
26.
Ferreira
,
J. P.
,
Ghezzi
,
E.
,
Ferrante
,
M.
, and
Covas
,
D. I. C.
,
2018
, “
Pressure Wave Behavior Due to Entrapped Air in Hydraulic Transient Events
,”
Proceedings of Pressure Surge 13
, Bordeaux, France, Nov. 14–16, pp.
105
115
.
27.
Zhou
,
L.
,
Liu
,
D.
,
Karney
,
B.
, and
Zhang
,
Q.
,
2011
, “
Influence of Entrapped Air Pockets on Hydraulic Transients in Water Pipelines
,”
J. Hydraul. Eng.
,
137
(
12
), pp.
1686
1692
.10.1061/(ASCE)HY.1943-7900.0000460
You do not currently have access to this content.