Abstract

This study investigated the water hammer pressure due to the sudden closure of the partially open valve experimentally and analytically. Because the partially open valve could produce local nonuniform flow, a supplementary Joukowsky's water hammer equation was derived based on the assumption of the local nonuniform flow and the kinetic energy equation. A physical model was set up to measure the maximum water hammer pressure of the first positive wave due to the sudden closure of the partially open valve under different conditions, including various water heads, flow velocities, pipe diameters, and valve types. The results showed that Joukowsky's equation obtained by the momentum theorem in the uniform flow field was applicable to the uniform flow field with the valve fully open. The experimental results of the partially open valve-closure water hammer pressures were 3.5–21% larger than Joukowsky's equation, which consisted of the theoretical analysis of the supplementary Joukowsky's water hammer equation. This phenomenon had repeatability and was unrelated to the water head, the inlet flow velocity, the pipe diameter, and the valve type. This study could guide water hammer protection in hydropower and pump stations.

References

1.
Silva-Araya
,
W. F.
, and
Chaudhry
,
M. H.
,
2001
, “
Unsteady Friction in Rough Pipes
,”
J. Hydraul. Eng.
,
127
(
7
), pp.
607
618
.10.1061/(ASCE)0733-9429(2001)127:7(607)
2.
Ghidaoui
,
M. S.
,
Mansour
,
S. G.
, and
Zhao
,
M.
,
2002
, “
Applicability of Quasisteady and Axisymmetric Turbulence Models in Water Hammer
,”
J. Hydraul. Eng.
,
128
(
10
), pp.
917
924
.10.1061/(ASCE)0733-9429(2002)128:10(917)
3.
Covas
,
D.
,
Stoianov
,
I.
,
Ramos
,
H.
,
Graham
,
N.
,
Maksimović
,
Č.
, and
Butler
,
D.
,
2004
, “
Water Hammer in Pressurized Polyethylene Pipes: Conceptual Model and Experimental Analysis
,”
Urban Water J.
,
1
(
2
), pp.
177
197
.10.1080/15730620412331289977
4.
Yan
,
X. F.
,
Duan
,
H. F.
,
Wang
,
X. K.
,
Wang
,
M. L.
, and
Lee
,
P. J.
,
2021
, “
Investigation of Transient Wave Behavior in Water Pipelines With Blockages
,”
J. Hydraul. Eng.
,
147
(
2
), p.
04020095
.10.1061/(ASCE)HY.1943-7900.0001841
5.
Mansuri
,
B.
,
Salmasi
,
F.
, and
Oghati
,
B.
,
2014
, “
Sensitivity Analysis for Water Hammer Problem in Pipelines
,”
Iran. J. Energy Environ.
,
5
(
2
), pp.
124
131
.10.5829/idosi.ijee.2014.05.02.03
6.
Garry
,
H.
,
Susan
,
B.
, and
Gregory
,
L.
,
2014
, “
Pipeline Surge Analysis Studies
,”
Proceedings of the Pipeline Simulation Interest Group Annual Meeting
(
PSIG '14
), Baltimore, MD, May 6–9, Paper No. PSIG-1417.https://onepetro.org/PSIGAM/proceedings-abstract/PSIG14/All-PSIG14/PSIG-1417/2455
7.
Tian
,
W.
,
Su
,
G.
,
Wang
,
G.
,
Qiu
,
S.
, and
Xiao
,
Z.
,
2008
, “
Numerical Simulation and Optimization on Valve-Induced Water Hammer Characteristics for Parallel Pump Feedwater System
,”
Ann. Nucl. Energy
,
35
(
12
), pp.
2280
2287
.10.1016/j.anucene.2008.08.012
8.
Subani
,
N.
, and
Amin
,
N.
,
2015
, “
Analysis of Water Hammer With Different Closing Valve Laws on Transient Flow of Hydrogen-Natural Gas Mixture
,”
Abstract Appl. Anal.
,
2015
, pp.
1
12
.10.1155/2015/510675
9.
Zhao
,
H.
,
Zhou
,
Z.
, and
Peng
,
W.
,
2018
, “
Research on Water Hammer Phenomenon During Stop Valve Closing Process Based on CFD
,”
International Symposium on Big Data and Artificial Intelligence (ISBDAI)
, Association for Computing Machinery, Hong Kong, pp.
139
145
.10.1145/3305275.3305303
10.
Kubrak
,
M.
, and
Kodura
,
A.
,
2020
, “
Water Hammer Phenomenon in Pipeline With Inserted Flexible Tube
,”
J. Hydraul. Eng.
,
146
(
2
), p.
04019054
.10.1061/(ASCE)HY.1943-7900.0001673
11.
Meniconi
,
S.
,
Brunone
,
B.
, and
Ferrante
,
M.
,
2011
, “
In-Line Pipe Device Checking by Short-Period Analysis of Transient Tests
,”
J. Hydraul. Eng.
,
137
(
7
), pp.
713
722
.10.1061/(ASCE)HY.1943-7900.0000309
12.
Joukowsky
,
N.
,
1900
, “
On the Hydraulic Hammer in Water Supply Pipes
,”
Mémoires Del'Academie Imperiale Des Sci. de St. Petersbourg
,
9
(
5
), pp.
1
71
(in German).
13.
Keramat
,
A.
, and
Haghighi
,
A.
,
2014
, “
Straightforward Transient-Based Approach for the Creep Function Determination in Viscoelastic Pipes
,”
J. Hydraul. Eng.
,
140
(
12
), p.
04014058
.10.1061/(ASCE)HY.1943-7900.0000929
14.
Abdel-Gawad
,
H. A.
, and
Djebedjian
,
B.
,
2020
, “
Modeling Water Hammer in Viscoelastic Pipes Using the Wave Characteristic Method
,”
Appl. Math. Modell.
,
83
, pp.
322
341
.10.1016/j.apm.2020.01.045
15.
Karney
,
B. W.
,
1990
, “
Energy Relations in Transient Closed-Conduit Flow
,”
J. Hydraul. Eng.
,
116
(
10
), pp.
1180
1196
.10.1061/(ASCE)0733-9429(1990)116:10(1180)
16.
Parizot
,
L.
,
Dutilleul
,
H.
,
Galvez
,
M.
,
Chave
,
T.
,
Da Costa
,
P.
, and
Nikitenko
,
S. I.
,
2020
, “
Physical and Chemical Characterization of Shock-Induced Cavitation
,”
Ultrason. Sonochem.
,
69
, p.
105270
.10.1016/j.ultsonch.2020.105270
17.
Bergant
,
A.
,
Tijsseling
,
A.
,
Vítkovský
,
J.
,
Covas
,
D.
,
Simpson
,
A.
, and
Lambert
,
M.
,
2008
, “
Parameters Affecting Water-Hammer Wave Attenuation, Shape and Timing—Part 1: Mathematical Tools
,”
J. Hydraul. Res.
,
46
(
3
), pp.
373
381
.10.3826/jhr.2008.2848
18.
Bergant
,
A.
,
Tijsseling
,
A.
,
Vítkovský
,
J.
,
Covas
,
D.
,
Simpson
,
A.
, and
Lambert
,
M.
,
2008
, “
Parameters Affecting Water-Hammer Wave Attenuation, Shape and Timing—Part 2: Case Studies
,”
J. Hydraul. Res.
,
46
(
3
), pp.
382
391
.10.3826/jhr.2008.2847
19.
Daude
,
F.
,
Tijsseling
,
A.
, and
Galon
,
P.
,
2018
, “
Numerical Investigations of Water-Hammer With Column-Separation Induced by Vaporous Cavitation Using a One-Dimensional Finite Volume Approach
,”
J. Fluids Struct.
,
83
, pp.
91
118
.10.1016/j.jfluidstructs.2018.08.014
20.
Walters
,
T. W.
, and
Leishear
,
R. A.
,
2019
, “
When the Joukowsky's Equation Does Not Predict Maximum Water Hammer Pressures
,”
ASME J. Pressure Vessel Technol.
,
141
(
6
), p.
060801
.10.1115/1.4044603
21.
Hanmaiahgari
,
P. R.
,
Kottam
,
R. R.
, and
Kaushik
,
M.
,
2019
, “
Estimation and Examination of Linepack Pressures in Long Liquid Pipelines
,”
Sādhanā
,
44
(
5
), p.
101
.10.1007/s12046-019-1081-5
22.
Wahba
,
E. M.
,
2016
, “
On the Propagation and Attenuation of Turbulent Fluid Transients in Circular Pipes
,”
ASME J. Fluids Eng.
,
138
(
3
), p.
031106
.10.1115/1.4031557
23.
Bergant
,
A.
, and
Simpson
,
A. R.
,
1999
, “
Pipeline Column Separation Flow Regimes
,”
J. Hydraul. Eng.
,
125
(
8
), pp.
835
848
.10.1061/(ASCE)0733-9429(1999)125:8(835)
24.
Nikpour
,
M. R.
,
Nazemi
,
A. H.
,
Dalir
,
A. H.
,
Shoja
,
F.
, and
Varjavand
,
P.
,
2014
, “
Experimental and Numerical Simulation of Water Hammer
,”
Arabian J. Sci. Eng.
,
39
(
4
), pp.
2669
2675
.10.1007/s13369-013-0942-1
25.
Merati
,
P.
,
Macelt
,
M. J.
, and
Erickson
,
R. B.
,
2001
, “
Flow Investigation Around a V-Sector Ball Valve
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
662
671
.10.1115/1.1385831
26.
Huang
,
C.
, and
Kim
,
R. H.
,
1996
, “
Three-Dimensional Analysis of Partially Open Butterfly Valve Flows
,”
ASME J. Fluids Eng.
,
118
(
3
), pp.
562
568
.10.1115/1.2817795
27.
Addy
,
A. L.
,
Morris
,
M. J.
, and
Dutton
,
J. C.
,
1985
, “
An Investigation of Compressible Flow Characteristics of Butterfly Valves
,”
ASME J. Fluids Eng.
,
107
(
4
), pp.
512
517
.10.1115/1.3242522
28.
Morris
,
M. J.
, and
Dutton
,
J. C.
,
1991
, “
An Experimental Investigation of Butterfly Valve Performance Downstream of an Elbow
,”
ASME J. Fluids Eng.
,
113
(
1
), pp.
81
85
.10.1115/1.2926501
29.
Morris
,
M. J.
, and
Dutton
,
J. C.
,
1989
, “
Aerodynamics Torque Characteristics of Butterfly Valves in Compressible Flow
,”
ASME J. Fluids Eng.
,
111
(
4
), pp.
392
399
.10.1115/1.3243658
30.
Chern
,
M. J.
,
Wang
,
C. C.
, and
Ma
,
C. H.
,
2007
, “
Performance Test and Flow Visualization of Ball Valve
,”
Exp. Therm. Fluid Sci.
,
31
(
6
), pp.
505
512
.10.1016/j.expthermflusci.2006.04.019
31.
Zou
,
Z.
,
Wang
,
F.
, and
Wang
,
L.
,
2018
, “
Study on Unsteady Flow Field of Butterfly Valve in Startup Process of Pressure-Driven Water Diversion System in Pumping Station
,”
Shuili Xuebao
,
49
(
6
), pp.
678
686
.
32.
Lin
,
Z.
,
Yin
,
D.
,
Tao
,
J.
,
Li
,
Y.
,
Sun
,
J.
, and
Zhu
,
Z.
,
2020
, “
Effect of Shaft Diameter on the Hydrodynamic Torque of Butterfly Valve Disk
,”
ASME J. Fluids Eng.
,
142
(
11
), p.
111202
.10.1115/1.4047795
33.
Bourdarias
,
C.
,
Ersoy
,
M.
, and
Gerbi
,
S.
,
2014
, “
Unsteady Mixed Flows in Non-Uniform Closed Water Pipes: A Full Kinetic Approach
,”
Numer. Math.
,
128
(
2
), pp.
217
263
.10.1007/s00211-014-0611-7
34.
Fenton
,
J. D.
,
2005
, “
On the Energy and Momentum Principles in Hydraulics
,”
Proceedings of 31st IAHR Congress
, Seoul, South Korea, Sept. 11–16, IAHR, pp.
625
636
.http://johndfenton.com/Papers/Fenton05-Energy-and-momentum.pdf
35.
Liou
,
C. P.
,
2016
, “
Understanding Line Packing in Frictional Water Hammer
,”
ASME J. Fluids Eng.
,
138
(
8
), p.
081303
.10.1115/1.4033368
You do not currently have access to this content.