Abstract

This paper deals with fluid–structure interaction analysis of an hexagonal rod enclosed in a narrow viscous gap. A new analytical solution for a two-dimensional (2D) cylindrical case is derived and described. A numerical solution of 2D Navier–Stokes equations coupled with a harmonic structure model is applied to both cylindrical and prism geometries. The comparison between the numerical tool and the analytical solution is discussed and a method to apply the analytical solution to the hexagonal case is proposed. An original definition of the added mass and damping based on an energetic approach is provided avoiding the dependence from the geometry and the type of forcing (free or forced vibration). An experimental facility is provided accounting for an hexagonal prism vibrating within a 7 mm enclosure. Free vibration experiments in water allow assessing the added mass and added damping effect on the modal parameters. The fluid flow is affected by a three-dimensional (3D) effect—named down-strokes flow—at the top and the base of the assembly because of free surface and stocky geometry. This produces a higher frequency than the 2D theoretical value given both by the analytical solution and the numerical simulation. A geometry-based correction factor is suggested to taken into account in the 2D numerical simulation the 3D effect. Velocity measured within the gap provides further insight on this phenomenon and agrees well with the prediction of the transposed cylindrical analytical model.

References

1.
Paidoussis
,
M. P.
,
1998
,
Fluid-Structure Interactions: Slender Structures and Axial Flow
,
Academic Press
,
San Diego, CA
.
2.
Zhong
,
Y.
,
Yang
,
X.
,
Ding
,
D.
,
Zou
,
Y.
, and
Tsang
,
D. K. L.
,
2018
, “
Numerical Study of the Dynamic Characteristics of a Single-Layer Graphite Core in a Thorium Molten Salt Reactor
,”
Nucl. Sci. Tech.
,
29
(
10
), p.
141
.10.1007/s41365-018-0488-8
3.
Zhong
,
Y.
,
Yang
,
X.
,
Ding
,
D.
,
Zou
,
Y.
, and
Tsang
,
D. K. L.
,
2018
, “
Dynamic Characteristics Identification of Two Graphite Bricks in Molten Salt Reactor Considering Fluid-Structure Interaction
,”
Nucl. Eng. Des.
,
335
, pp.
409
416
.10.1016/j.nucengdes.2018.06.015
4.
Daogang
,
L.
,
Aiguo
,
L.
,
Chaohao
,
S.
,
Junjie
,
D.
,
Yang
,
H.
, and
Qingyu
,
X.
,
2013
, “
Experimental Investigation on Fluid-Structure-Coupled Dynamic Characteristics of the Double Fuel Assemblies in a Fast Reactor
,”
Nucl. Eng. Des.
,
255
, pp.
180
184
.10.1016/j.nucengdes.2012.10.013
5.
Wilson
,
D. E.
,
1991
, “
Added Mass and Damping Coefficients for Hexagonal Cylinder
,”
J. Fluids Struct.
,
5
(
5
), pp.
503
519
.10.1016/S0889-9746(05)80003-9
6.
Yang
,
C.-I.
, and
Moran
,
T. J.
,
1979
, “
Finite-Element Solution of Added Mass and Damping of Oscillation Rods in Viscous Fluids
,”
ASME J. Appl. Mech.
,
46
(
3
), pp.
519
523
.10.1115/1.3424599
7.
Fujita
,
K.
,
1981
, “
Vibrational Characteristics and Seismic Response Analysis of Columns Group in Liquid
,”
Bull. JSME
,
24
(
197
), pp.
1994
2002
.10.1299/jsme1958.24.1994
8.
Chen
,
S. S.
,
1975
, “
Vibration of Nuclear Fuel Bundles
,”
Nucl. Eng. Des.
,
35
, pp.
399
422
.10.1016/0029-5493(75)90071-0
9.
Chen
,
S. S.
,
Wambsganss
,
M. W.
, and
Jendrzejczyk
,
J. A.
,
1976
, “
Added Mass and Damping of a Vibrating Rod in Confined Viscous Fluids
,”
ASME J. Appl. Mech.
,
43
(
2
), pp.
325
329
.10.1115/1.3423833
10.
Fritz
,
R. J.
,
1972
, “
The Effect of Liquids on the Dynamic Motions of Immersed Solids
,”
J. Eng. Ind.
,
94
(
1
), pp.
167
173
.10.1115/1.3428107
11.
Mulcahy
,
T. M.
,
1980
, “
Fluid Forces on Rods Vibrating in Finite Length Annular Regions
,”
ASME J. Appl. Mech.
,
47
(
2
), pp.
234
240
.10.1115/1.3153648
12.
Fritz
,
R. J.
,
1976
, “
Added Mass and Damping of a Vibratory Rod in Confined Viscous Fluids (Discussion)
,”
ASME J. Appl. Mech.
,
43
(
4
), pp.
699
700
.10.1115/1.3423965
13.
Sargentini
,
L.
,
Cariteau
,
B.
, and
Angelucci
,
M.
,
2014
, “
Experimental and Numerical Analysis for Fluid-Structure Interaction for an Enclosed Hexagonal Assembly
,”
ASME
Paper No. PVP2014-28053.10.1115/PVP2014-28053
14.
Artini
,
G.
, and
Broc
,
D.
,
2017
, “
Fluid Structure Interaction for Tubes Bundles: Different Homogenization Methods
,”
ASME
Paper No. PVP2017-65727.10.1115/PVP2017-65727
15.
Sargentini
,
L.
,
2014
, “
Étude des mécanismes d'intéraction fluide-structure d'un cœur RNR-Na lors de l'évacuation d'une poche de gaz
,” Ph.D. thesis,
Pierre and Marie Curie University
,
Paris, France
(in French).
16.
Deri
,
E.
,
2022
, “
Some Comments on Added Mass Modeling for Tube Bundles Under Two-Phase Cross Flow
,”
ASME J. Pressure Vessel Technol.
,
144
(
4
), p.
044503
.10.1115/1.4054074
17.
Chung
,
H.
, and
Chen
,
S. S.
,
1984
, “Hydrodynamic Mass,” Argonne National Laboratory, Lemont, IL, Report No.
CONF-840647-9
.https://inis.iaea.org/search/search.aspx?orig_q=RN:15072850
18.
Sargentini
,
L.
,
Cariteau
,
B.
,
Magnaud
,
J.-P.
,
Monavon
,
A.
, and
Artini
,
G.
,
2015
, “
3D Effects in Fluid Flow During 2D Vibrations: Experimental Analysis of FSI for an Enclosed Hexagonal Assembly
,”
ASME
Paper No. PVP2015-45904.10.1115/PVP2015-45904
You do not currently have access to this content.