Abstract

There are dozens of formulas in literature and standards for residual strength calculation of the pressurized ductile pipes with axial rectangular defect. Their accuracy is usually characterized by the so-called “model error” notion. The latter is established as the averaged deviance of experimental data from the calculated results. In fact, the model error determined in such way is partly related to the validity and range of the chosen experimental data. The idea of our work is to introduce the notion of “targeted model error.” It is expected to characterize the accuracy of given formula for the particular defect only with given ratio of its dimensions, which is named as the “point of interest.” So, every experiment can give the contribution to the targeted model error according to its weight on the point of interest. These weights are subjectively established based on the difference between the dimensionless residual strengths calculated for the point of interest and for the real defect dimensions of the considered experiment. Practical examples of determination of the targeted model errors are performed for the ratios of the defect depth to wall thickness equal to 0.5, 0.6, 0.7, and 0.8 for three well-known formulas—ASME, PCORRC, and O-formula.

References

1.
Bhardwaj
,
U.
,
Teixeira
,
A. P.
, and
Guedes Soares
,
C.
,
2020
, “
Uncertainty Quantification of Burst Pressure Models of Corroded Pipelines
,”
Int. J. Pressure Vessels Piping
,
188
, p.
104208
.10.1016/j.ijpvp.2020.104208
2.
Seghier
,
M. A. B.
,
Keshtegar
,
B.
, and
Elahmoune
,
B.
,
2018
, “
Reliability Analysis of Low, Mid and High-Grade Strength Corroded Pipes Based on Plastic Flow Theory Using Adaptive Nonlinear Conjugate Map
,”
Eng. Failure Anal.
,
90
, pp.
245
261
.10.1016/j.engfailanal.2018.03.029
3.
Zhou
,
W.
, and
Huang
,
G.
,
2012
, “
Model Error Assessment of Burst Capacity Models for Defect-Free Pipes
,”
ASME
Paper No. IPC2012-90334.10.1115/IPC2012-90334
4.
Zheng
,
Q.
,
Abdelmoety
,
A. K.
,
Li
,
Y.
,
Kainat
,
M.
,
Yoosef-Ghodsi
,
N.
, and
Adeeb
,
S.
,
2021
, “
Reliability Analysis of Intact and Defected Pipes for Internal Pressure Related Limit States Specified in CSA Z622:19
,”
Int. J. Pressure Vessels Piping
,
192
, p.
104411
.10.1016/j.ijpvp.2021.104411
5.
Cronin
,
D. S.
,
2000
, “
Assessment of Corrosion Defects in Pipelines
,”
Ph.D. thesis
,
University of Waterloo
,
Waterloo, ON, Canada
.https://uwspace.uwaterloo.ca/bitstream/handle/10012/478/NQ51187.pdf?sequence=1
6.
Kiefner
,
J. F.
, and
Veith
,
P. H.
,
1989
, “A Modified Criterion for Evaluating the Remaining Strength of Corroded Pipe,”
Pipeline Research Council International, Inc./Battelle Memorial Institute
,
Columbus
, OH, Report No.
PR-3-805
.https://www.osti.gov/biblio/7181509
7.
Orynyak
,
I.
,
Bai
,
J.
, and
Mazuryk
,
R.
,
2021
, “
Analytical Limit Load Procedure for the Axial Complex Shaped Defect in a Pressurized Pipe
,”
ASME. J. Pressure Vessel Technol.
,
144
(
4
), p.
041305
.10.1115/1.4052851
8.
Inkabi
,
K. S.
, and
Bea
,
R. G.
,
2004
, “
Burst Database Verification Study for Corroded Line-Pipe
,”
ASME
Paper No. OMAE2004-51036.10.1115/OMAE2004-51036
9.
Orynyak
,
I.
,
Marchenko
,
V.
,
Mazuryk
,
R.
, and
Oryniak
,
A.
,
2022
, “
Targeted Method of Statistical Treatment of Experimental Results of Defected Pipe Burst Tests
,”
Physico-Khimichna Mechanica Materialiv
, 58(3), epub.
10.
Maxey
,
W. A.
,
Kiefner
,
J. F.
,
Eiber
,
R. J.
, and
Duffy
,
A. R.
,
1972
, “
Ductile Fracture Initiation, Propagation and Arrest in Cylindrical Vessels
,”
Fracture Toughness: Part II
, STP514,
H.
Corten
, ed.,
ASTM International
,
West Conshohocken, PA
, pp.
70
81
.
11.
Fitness-for-Service API 579-1/ASME FFS-1, 2016, The American Petroleum Institute and the American Society of Mechanical Engineers, API Publishing Services, Washington, DC.
12.
Leis
,
B. N.
, and
Stephens
,
D. R.
,
1997
, “
An Alternative Approach to Assess the Integrity of Corroded Line Pipe—Part I: Current Status
,” Proceedings of Seventh International Offshore and Polar Engineering Conference,
Honolulu, HI
, May 25–30, Paper No.
ISOPE-I-97-490
, pp.
624
634
.https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE97/All-ISOPE97/ISOPE-I-97-490/24221
13.
Leis
,
B. N.
, and
Stephens
,
D. R.
,
1997
, “
An Alternative Approach to Assess the Integrity of Corroded Line Pipe—Part II: Alternative Criterion
,” Proceedings of Seventh International Offshore and Polar Engineering Conference, Honolulu, HI, May 25–30, Paper No.
ISOPE-I-97-491
, pp.
635
641
.https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE97/All-ISOPE97/ISOPE-I-97-491/24254
14.
Yeom
,
K. J.
,
Kim
,
W. S.
, and
Oh
,
K. H.
,
2016
, “
Integrity Assessment of API X70 Pipe With Corroded Girth and Seam Welds Via Numerical Simulation and Burst Test Experiments
,”
Eng. Failure Anal.
,
70
, pp.
375
386
.10.1016/j.engfailanal.2016.09.008
15.
Krasovskii
,
A.
,
Orynyak
,
I.
, and
Torop
,
V.
,
1990
, “
Ductile Failure of Cylindrical Bodies With Axial Cracks Loaded by Internal Pressure
,”
Strength Mater.
,
22
(
2
), pp.
172
177
.10.1007/BF00773234
16.
Orynyak
,
I. V.
,
2006
, “
Leak and Break Models of Ductile Fracture of Pressurized Pipe With Axial Defects
,”
ASME
Paper No. IPC2006-10066.10.1115/IPC2006-10066
17.
Orynyak
,
I.
,
Zarazovskii
,
M.
, and
Bogdan
,
A.
,
2013
, “
Determination of the Transition Temperature Scatter Using the Charpy Data Scatter
,”
ASME
Paper No. PVP2013-97697.10.1115/PVP2013-97697
18.
Duffy
,
A. R.
,
McClure
,
G. M.
,
Eiber
,
R. J.
, and
Maxey
,
W. A.
,
1969
, “
Fracture Design Practice for Pressure Piping
,”
Fracture: An Advanced Treatise
,
H.
Liebowitz
, ed., Vol.
5
,
Pergamon Press
, New York, pp.
159
232
.
19.
Orynyak
,
I. V.
,
Vlasenko
,
N. I.
,
Kozlov
,
V. Y.
,
Andrieshin
,
Y. A.
,
Chechin
,
É. V.
,
Buiskikh
,
K. P.
,
Ageev
,
S. M.
, and
Yanko
,
O. A.
,
2012
, “
Test Results for Edge-Notched Pipe Specimens Within Framework of Experimental Substantiation of the Leak-Before-Break Phenomenon
,”
Strength Mater.
,
44
(
5
), pp.
562
573
.10.1007/s11223-012-9409-y
20.
Amano
,
T.
, and
Makino
,
H.
,
2012
, “
Evaluation of Leak/Rupture Behavior for Axially Part-Through-Wall Notched High-Strength Line Pipes
,”
ASME
Paper No. IPC2012-90216.10.1115/IPC2012-90216
21.
Kawaguchi
,
S.
,
Hagiwara
,
N.
,
Masuda
,
T.
, and
Toyoda
,
M.
,
2004
, “
Evaluation of Leak-Before-Break (LBB) Behavior for Axially Notched X65 and X80 Line Pipes
,”
ASME J. Offshore Mech. Arct. Eng.
,
126
(
4
), pp.
350
357
.10.1115/1.1834619
22.
Staat
,
M.
,
2004
, “
Plastic Collapse Analysis of Longitudinally Flawed Pipes and Vessels
,”
Nucl. Eng. Des.
,
234
(
1–3
), pp.
25
43
.10.1016/j.nucengdes.2004.08.002
23.
Stoppler
,
W.
,
Sturm
,
D.
,
Scott
,
P.
, and
Wilkowski
,
G.
,
1994
, “
Analysis of the Failure Behaviour of Longitudinally Flawed Pipes and Vessels
,”
Nucl. Eng. Des.
,
151
(
2–3
), pp.
425
448
.10.1016/0029-5493(94)90186-4
You do not currently have access to this content.