Abstract

Deep-sea structures will collapse/implode under hydrostatic pressure when the structure dives below an instability threshold, leading to catastrophic failure. To better understand how the layup angle of composite cylindrical shells influences this instability threshold, this work explores how composite cylinders can achieve the highest (optimum) critical collapse pressure under hydrostatic loading conditions. To perform this analysis, a closed-form analytical cylinder buckling solution developed by previous work is used in conjunction with different cylindrical geometrical configurations and composite properties for glass, carbon, and intraply hybrid composite properties for woven and unidirectional structures. The results show that a composite structure's optimum layup configuration is unique to the structure's geometry and material system. However, general trends are observed for these different systems, such as how symmetric and asymmetric constructions place the axial-resistant layers near the neutral plane of the composite system. In addition, both constructions need an increase in shear-resistance layers as the L/D ratio decreases regardless of the material system. Lastly, the analytical approach presented in this work can be used to accurately determine the optimum layup angle for thin composite cylindrical structures that are subjected to external hydrostatic pressure.

References

1.
Rubino
,
F.
,
Nisticò
,
A.
,
Tucci
,
F.
, and
Carlone
,
P.
,
2020
, “
Marine Application of Fiber Reinforced Composites: A Review
,”
J. Mar. Sci. Eng.
,
8
(
1
), p.
26
.10.3390/jmse8010026
2.
Pinto
,
M.
,
Gupta
,
S.
, and
Shukla
,
A.
,
2015
, “
Study of Implosion of Carbon/Epoxy Composite Hollow Cylinders Using 3-D Digital Image Correlation
,”
Compos. Struct.
,
119
, pp.
272
286
.10.1016/j.compstruct.2014.08.040
3.
Mouritz
,
A. P.
,
Gellert
,
E.
,
Burchill
,
P.
, and
Challis
,
K.
,
2001
, “
Review of Advanced Composite Structures for Naval Ships and Submarines
,”
Compos. Struct.
,
53
(
1
), pp.
21
42
.10.1016/S0263-8223(00)00175-6
4.
Bresse
,
J. A. C.
,
1868
,
Cours de Mécanique Appliquée, Professé à L'École Impériale Des Ponts et Chausées
,
Gauthier-Villars
.
5.
Lorenz
,
R.
,
1911
, “
Die Nichtachsensymmetrische Knickung Dunnwanger Hohlzylinder
,”
Phys Z
,
13
, pp.
241
–2
60
.
6.
Lorenz
,
R.
, 1908, Achsensymmetrische verzerrungen in dünnwandigen hohlzylindern, Z. VDI. Vol. 52, No. 43, p.
1706
.
7.
Southwell
,
R. V.
, and
Love AEH
,
V.
,
1914
, “
On the General Theory of Elastic Stability
,”
Philos. Trans. R. Soc. London Ser. A
,
213
, pp.
187
244
.
8.
Von Mises
,
R.
,
1933
, “
Basin USEM
,”
The Critical External Pressure of Cylindrical Tubes
,
U.S, Experimental Model Basin
,
Navy Yard, Washington, DC
.
9.
Timoshenko
,
S.
, 1914,
Buckling of a Cylindrical Shell Under the Action of Uniform Axial Pressure
,
Bulletin, Electrotechnical Institut.
10.
Von Mises
,
R.
,
1933
,
The Critical External Pressure of Cylindrical Tubes Under Uniform Radial and Axial Load
,
David Taylor Model Basin
,
Washington, DC
.
11.
Flügge
,
W.
,
1932
, “
Die Stabilität Der Kreiszylinderschale
,”
Ing. Arch.
,
3
(
5
), pp.
463
506
.10.1007/BF02079822
12.
Donnell
,
L. H.
,
1934
, “
A New Theory for the Buckling of Thin Cylinders Under Axial Compression and Bending
,” N.A.C.A., Akron, OH, Report No. 473.
13.
Donnell
,
L. H.
, and
Wan
,
C. C.
,
1950
, “
Effect of Imperfections on Buckling of Thin Cylinders and Columns Under Axial Compression
,”
J. Appl. Mech.
, 17(1), pp. 73–83.10.1115/1.4010060
14.
Gere
,
J. M.
, and
Timoshenko
,
S. P.
,
1961
, “
Theory of Elastic Stability
,” McGraw-Hill, New York.
15.
Yamaki
,
N.
,
1984
,
Elastic Stability of Circular Cylindrical Shells
,
Elsevier
, North-Holland.
16.
Teng
,
J.-G.
, and
Rotter
,
J. M.
,
2006
,
Buckling of Thin Metal Shells
,
CRC Press
, London, UK.
17.
Pinto
,
M.
,
Gupta
,
S.
, and
Shukla
,
A.
,
2015
, “
Hydrostatic Implosion of GFRP Composite Tubes Studied by Digital Image Correlation
,”
ASME J. Pressure Vessel Technol.
,
137
(
5
), p.
051302
.10.1115/1.4029657
18.
Pinto
,
M.
, and
Shukla
,
A.
,
2016
, “
Shock-Initiated Buckling of Carbon/Epoxy Composite Tubes at Sub-Critical Pressures
,”
Exp. Mech.
,
56
(
4
), pp.
583
594
.10.1007/s11340-015-0033-1
19.
Hur
,
S.-H.
,
Son
,
H.-J.
,
Kweon
,
J.-H.
, and
Choi
,
J.-H.
,
2008
, “
Postbuckling of Composite Cylinders Under External Hydrostatic Pressure
,”
Compos. Struct.
,
86
(
1–3
), pp.
114
124
.10.1016/j.compstruct.2008.03.028
20.
Yang
,
C.
,
Pang
,
S.-S.
, and
Zhao
,
Y.
,
1997
, “
Buckling Analysis of Thick-Walled Composite Pipe Under External Pressure
,”
J. Compos. Mater.
,
31
(
4
), pp.
409
426
.10.1177/002199839703100405
21.
Gupta
,
S.
,
Matos
,
H.
,
Leblanc
,
J. M.
, and
Shukla
,
A.
,
2016
, “
Shock Initiated Instabilities in Underwater Cylindrical Structures
,”
J. Mech. Phys. Solids
,
95
, pp.
188
212
.10.1016/j.jmps.2016.05.034
22.
Pinto
,
M.
,
Matos
,
H.
,
Gupta
,
S.
, and
Shukla
,
A.
,
2016
, “
Experimental Investigation on Underwater Buckling of Thin-Walled Composite and Metallic Structures
,”
ASME J. Pressure Vessel Technol.
,
138
(
6
), p.
060905
.10.1115/1.4032703
23.
Matos
,
H.
, and
Shukla
,
A.
,
2016
, “
Mitigation of Implosion Energy From Aluminum Structures
,”
Int. J. Solids Struct.
,
100–101
, pp.
566
574
.10.1016/j.ijsolstr.2016.09.030
24.
Matos
,
H.
,
Gupta
,
S.
, and
Shukla
,
A.
,
2018
, “
Structural Instability and Water Hammer Signatures From Shock-Initiated Implosions in Confining Environments
,”
Mech. Mater.
,
116
, pp.
169
179
.10.1016/j.mechmat.2016.12.004
25.
Shukla
,
A.
,
Gupta
,
S.
,
Matos
,
H.
, and
Leblanc
,
J. M.
,
2018
, “
Dynamic Collapse of Underwater Metallic Structures – Recent Investigations: Contributions After the 2011 Murray Lecture
,”
Exp. Mech.
,
58
(
3
), pp.
387
405
.10.1007/s11340-017-0364-1
26.
Javier
,
C.
,
Matos
,
H.
, and
Shukla
,
A.
,
2018
, “
Hydrostatic and Blast Initiated Implosion of Environmentally Degraded Carbon-Epoxy Composite Cylinders
,”
Compos. Struct.
,
202
, pp.
897
908
.10.1016/j.compstruct.2018.04.055
27.
Matos
,
H.
,
Kishore
,
S.
,
Salazar
,
C.
, and
Shukla
,
A.
,
2020
, “
Buckling, Vibration, and Energy Solutions for Underwater Composite Cylinders
,”
Compos. Struct.
,
244
, p.
112282
.10.1016/j.compstruct.2020.112282
28.
Selvaraju, S., and Ilaiyavel, S., 2011,
Applications of Composites in Marine Industry
,” JERS, 2(2), pp.
89
91
.https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.963&rep=rep1&type=pdf
29.
Arhant
,
M.
,
Briançon
,
C.
,
Burtin
,
C.
, and
Davies
,
P.
,
2019
, “
Carbon/Polyamide 6 Thermoplastic Composite Cylinders for Deep Sea Applications
,”
Compos. Struct.
,
212
, pp.
535
546
.10.1016/j.compstruct.2019.01.058
30.
Hu
,
H.-T.
, and
Wang
,
S. S.
,
1992
, “
Optimization for Buckling Resistance of Fiber-Composite Laminate Shells With and Without Cutouts
,”
Compos. Struct.
,
22
(
1
), pp.
3
13
.10.1016/0263-8223(92)90034-A
31.
Abrate
,
S.
,
1994
, “
Optimal Design of Laminated Plates and Shells
,”
Compos. Struct.
,
29
(
3
), pp.
269
286
.10.1016/0263-8223(94)90024-8
32.
Geier
,
B.
,
Meyer-Piening
,
H.-R.
, and
Zimmermann
,
R.
,
2002
, “
On the Influence of Laminate Stacking on Buckling of Composite Cylindrical Shells Subjected to Axial Compression
,”
Compos. Struct.
,
55
(
4
), pp.
467
474
.10.1016/S0263-8223(01)00175-1
33.
Imran
,
M.
,
Shi
,
D.
,
Tong
,
L.
,
Elahi
,
A.
,
Waqas
,
H. M.
, and
Uddin
,
M.
,
2021
, “
Multi-Objective Design Optimization of Composite Submerged Cylindrical Pressure Hull for Minimum Buoyancy Factor and Maximum Buckling Load Capacity
,”
Defence Technol.
,
17
(
4
), pp.
1190
1206
.10.1016/j.dt.2020.06.017
34.
Imran
,
M.
,
Shi
,
D.
,
Tong
,
L.
,
Elahi
,
A.
, and
Uddin
,
M.
,
2021
, “
On the Elastic Buckling of Cross-Ply Composite Closed Cylindrical Shell Under Hydrostatic Pressure
,”
Ocean Eng.
,
227
, p.
108633
.10.1016/j.oceaneng.2021.108633
35.
Shen
,
K.-C.
,
Jiang
,
L.-L.
,
Yang
,
Z.-Q.
, and
Pan
,
G.
,
2022
, “
Buckling of a Composite Cylindrical Shell With Cantilever-Like Boundary Conditions Under Hydrostatic Pressure
,”
J. Mar. Sci. Eng.
,
10
(
2
), p.
126
.10.3390/jmse10020126
36.
Ekşı
,
S.
, and
Genel
,
K.
,
2017
, “
Comparison of Mechanical Properties of Unidirectional and Woven Carbon, Glass and Aramid Fiber Reinforced Epoxy Composites
,”
Acta Phys. Polon. A
,
132
(
3-II
), pp.
879
882
.10.12693/APhysPolA.132.879
You do not currently have access to this content.