Abstract

The impact of a weaker heat of the wrought form of Haynes 282 nickel superalloy on predicted 100,000 h creep rupture strength (CRS) and hence maximum allowable working stress (MAWS) was determined by correlating the creep rupture data of the two stronger heats of material that were used (along with the third weaker heat) to develop the ASME Code Case for this alloy. In comparison with the established MAWS values, estimated MAWS values were 3–7% higher in the temperature range of 700–800 °C and up to 30% higher above 800 °C when the weaker heat was removed from the data analysis. These results show the importance of minimizing heat to heat variability of properties that affect high temperature creep strength, including grain size, which can be affected by parameters that might not be included in the alloy specification. For nickel superalloys, such as Haynes 282, design optimization and manufacturing control of grain size, in addition to chemical composition and gamma prime content and size, can provide measurable improvements in MAWS values established by ASME in the time-dependent region, where these alloys are usually employed.

References

1.
Kruger
,
K. L.
,
2017
, “
Haynes 282 Alloy
,”
Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants
,
A.
Di Gianfrancesco
, ed., Chapter 15,
Woodhead Publishing
, Cambridge, UK, pp.
511
545
.10.1016/B978-0-08-100552-1.00015-4
2.
Pint
,
B. A.
,
Pillai
,
R.
,
Lance
,
M. J.
, and
Keiser
,
J. R.
,
2020
, “
Effect of Pressure and Thermal Cycling on Long-Term Oxidation in CO2 and Supercritical CO2
,”
Oxid. Met.
,
94
(
5–6
), pp.
505
526
.10.1007/s11085-020-10004-9
3.
ASME
,
2021
, “
ASME Code Case 3024
,” ASME, New York, approved July 22, 2021.
4.
Santella
,
M.
,
Tortorelli
,
P. F.
,
Render
,
M.
,
Pint
,
B.
,
Wang
,
H.
,
Cedro
, III
,
V.
, and
Chen
,
X.
,
2022
, “
Effects of Applied Stress and Grain Size on Creep-Rupture Prediction for Haynes® 282 Alloy
,”
Mater. Sci. Eng. A
,
838
, pp.
142785
1
142785-15
.10.1016/j.msea.2022.142785
5.
ASME BPVC. II.D.C,
2019
, “
Derivation of Allowable Stress Values, Mandatory Appendix 1, Section 1-100
,” ASME, New York.
6.
Tortorelli
,
P. F.
,
Wang
,
H.
,
Unocic
,
K. A.
,
Santella
,
M. L.
,
Shingledecker
,
J. P.
, and
Cedro
, III.
V.
,
2014
, “
Long-Term Creep-Rupture Behavior of Alloy Inconel® 740 and Haynes® 282
,”
ASME
Paper No. ETAM2014-1003.10.1115/ETAM2014-1003
7.
Reed
,
R. C.
,
2006
,
The Superalloys: Fundamentals and Applications
,
Cambridge University Press
,
Cambridge, UK
.
8.
Frost
,
H. J.
, and
Ashby
,
M. F.
,
1982
,
Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics
,
Pergamon Press
,
Oxford, UK
.
9.
Honeycombe
,
R. W. K.
,
1968
,
The Plastic Deformation of Metals
,
Edward Arnold
,
London, UK
.
10.
Shingledecker
,
J.
,
Evans
,
N.
, and
Pharr
,
G.
,
2013
, “
Influences of Composition and Grain Size on Creep–Rupture Behavior of Inconel® Alloy 740
,”
Mater. Sci. Eng. A
,
578
, pp.
277
286
.10.1016/j.msea.2013.04.087
11.
Zhu
,
X. W.
,
Cheng
,
H. H.
,
Shen
,
M. H.
, and
Pan
,
J. P.
,
2013
, “
Determination of C Parameter of Larson-Miller Equation for 15CrMo Steel
,”
Adv. Mater. Res.
,
791–793
, pp.
374
377
.10.4028/www.scientific.net/AMR.791-793.374
12.
Haque
,
M. S.
, and
Stewart
,
C. M.
,
2020
, “
Metamodeling Time-Temperature Creep Parameters
,”
ASME J. Pressure Vessel Technol.
,
142
(
3
), p.
031504
.10.1115/1.4045887
13.
ASME BPVC. II.D.C
,
2021
, “
Mandatory Appendix 5, Guidelines on the Approval of New Materials Under the ASME Boiler and Pressure Vessel Code Section 5-900
,” Time Dependent Properties, ASME, New York.
You do not currently have access to this content.