Abstract

This technical brief proposes a defect recognition model to recognize four typical defects of phased array ultrasonic testing (PA-UT) images for electrofusion (EF) joints. PA-UT has been proved to be the most feasible way to inspect defects in EF joints of polyethylene pipes. The recognition of defects in PA-UT images relies on the experience of operators, resulting in inconsistent defective detection rate and low recognition speed. The proposed recognition model was composed of an anomaly detection model and a defect detection model. The anomaly detection model recognized anomalies in PA-UT images, meeting the requirement of real-time recognition for practical inspection. The defect detection model classified and located defects in abnormal PA-UT images, achieving high accuracy of defects recognition. By comparing detection models, optimizing parameters and augmenting dataset, the anomaly detection model and defect detection model reached a good combination of accuracy and speed.

References

1.
Zheng
,
J.
,
Hou
,
D.
,
Guo
,
W.
,
Miao
,
X.
,
Zhou
,
Y.
, and
Shi
,
J.
,
2016
, “
Ultrasonic Inspection of Electrofusion Joints of Large Polyethylene Pipes in Nuclear Power Plants
,”
ASME J. Pressure Vessel Technol.
,
138
(
6
), p.
060908
.10.1115/1.4033448
2.
Zheng
,
J.
,
Shi
,
J.
, and
Guo
,
W.
,
2012
, “
Development of Nondestructive Test and Safety Assessment of Electrofusion Joints for Connecting Polyethylene Pipes
,”
ASME J. Pressure Vessel Technol.
,
134
, p.
021406
.10.1115/1.4004869
3.
Prowant
,
M. S.
,
Denslow
,
K. M.
,
Moran
,
T. L.
,
Jacob
,
R. E.
,
Hartman
,
T. S.
,
Crawford
,
S. L.
,
Mathews
,
R.
, and
Neill
,
K. J.
,
2016
, “
Evaluation of Ultrasonic Phased-Array for Detection of Planar Flaws in High-Density Polyethylene (HDPE) Butt-Fusion Joints
,”
ASME
Paper No. V06BT06A051. 10.1115/V06BT06A051
4.
Egerton
,
J. S.
,
Lowe
,
M. J.
,
Huthwaite
,
P.
, and
Halai
,
H. V.
,
2017
, “
Ultrasonic Attenuation and Phase Velocity of High-Density Polyethylene Pipe Material
,”
J. Acoust. Soc. Am.
,
141
(
3
), pp.
1535
154
.10.1121/1.4976689
5.
Chinese Standard
, 2012, “
Ultrasonic Testing for Electro-Fusion Joint of Polyethylene Pipe
,” Standard No. GB/T
29461
2012
.
6.
Chinese Standard
, 2012, “
Safety Assessment for Electro-Fusion Joint of Polyethylene Pipes Containing Defects
,” Standard No. GB/T
29460
2012
.
7.
Shi
,
J.
,
Zheng
,
J.
,
Guo
,
W.
, and
Qin
,
Y.
,
2012
, “
Defects Classification and Failure Modes of Electrofusion Joint for Connecting Polyethylene Pipes
,”
J. Appl. Polym. Sci.
,
124
(
5
), pp.
4070
4080
.10.1002/app.35013
8.
Dong
,
S.
,
Sun
,
X.
,
Xie
,
S.
, and
Wang
,
M.
,
2019
, “
Automatic Defect Identification Technology of Digital Image of Pipeline Weld
,”
Natural Gas Ind. B
,
6
, pp.
399
403
.10.1016/j.ngib.2019.01.016
9.
Hou
,
D.
,
Guo
,
W.
, and
Zheng
,
J.
,
2015
, “
A Method of Automatic Defect Recognition for Phased Array Ultrasonic Inspection of Polythene Electro-Fusion Joints
,”
ASME
Paper No. PVP2015-45397. 10.1115/PVP2015-45397
10.
Zahran
,
O.
,
Kasban
,
H.
,
El-Kordy
,
M.
, and
El-Samie
,
F. E. A.
,
2013
, “
Automatic Weld Defect Identification From Radiographic Images
,”
NDT E Int.
,
57
, pp.
26
35
.10.1016/j.ndteint.2012.11.005
11.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
The MIT Press
, Cambridge,
MA
.
12.
Ren
,
S.
,
He
,
K.
,
Girshick
,
R.
, and
Sun
,
J.
,
2015
, “
Faster R-CNN: Towards Real-Time Object Detection With Region Proposal Networks
,”
IEEE Trans. Pattern Anal. Mach. Intell.
, 39(6), pp.1137–1149.10.1109/TPAMI.2016.2577031
13.
Jin
,
Y.
,
Zhang
,
D.
,
Li
,
M.
,
Wang
,
Z.
, and
Chen
,
Y.
,
2019
, “
A Fuzzy Support Vector Machine-Enhanced Convolutional Neural Network for Recognition of Glass Defects
,”
Int. J. Fuzzy Syst.
,
21
(
6
), pp.
1870
1881
.10.1007/s40815-019-00697-9
14.
Shu
,
Y.
,
Huang
,
Y.
, and
Li
,
B.
,
2019
, “
Design of Deep Learning Accelerated Algorithm for Online Recognition of Industrial Products Defects
,”
Neural Comput. Appl.
,
31
(
9
), pp.
4527
4540
.10.1007/s00521-018-3511-4
15.
Miao
,
R.
,
Gao
,
Y.
,
Ge
,
L.
,
Jiang
,
Z.
, and
Zhang
,
J.
,
2019
, “
Online Defect Recognition of Narrow Overlap Weld Based on Two-Stage Recognition Model Combining Continuous Wavelet Transform and Convolutional Neural Network
,”
Comput. Ind.
,
112
, p.
103115
.10.1016/j.compind.2019.07.005
16.
Rubio
,
J. J.
,
Kashiwa
,
T.
,
Laiteerapong
,
T.
,
Deng
,
W.
,
Nagai
,
K.
,
Escalera
,
S.
,
Nakayama
,
K.
,
Matsuo
,
Y.
, and
Prendinger
,
H.
,
2019
, “
Multi-Class Structural Damage Segmentation Using Fully Convolutional Networks
,”
Comput. Ind.
,
112
, p.
103121
.10.1016/j.compind.2019.08.002
17.
Liang
,
P.
,
Deng
,
C.
,
Wu
,
J.
,
Yang
,
Z.
,
Zhu
,
J.
, and
Zhang
,
Z.
,
2019
, “
Compound Fault Diagnosis of Gearboxes Via Multi-Label Convolutional Neural Network and Wavelet Transform
,”
Comput. Ind.
,
113
, p.
103132
.10.1016/j.compind.2019.103132
18.
Li
,
Y.
, and
Gao
,
W.
,
2019
, “
Research on X-Ray Welding Image Defect Detection Based on Convolution Neural Network
,”
J. Phys.: Conf. Ser.
,
1237
, p.
32005
.10.1088/1742-6596/1237/3/032005
19.
Dvornik
,
N.
,
Mairal
,
J.
, and
Schmid
,
C.
,
2018
, “
Modeling Visual Context is Key to Augmenting Object Detection Datasets
,”
Comput. Vision Pattern Recognit.
,
11216
, pp.
375
391
.10.1007/978-3-030-01258-8
20.
Zhao
,
Z.
,
Zheng
,
P.
,
Xu
,
S.
, and
Wu
,
X.
,
2019
, “
Object Detection With Deep Learning: A Review
,”
IEEE Trans. Neural Networks Learn. Syst.
,
30
(
11
), pp.
3212
3232
.10.1109/TNNLS.2018.2876865
21.
Girshick
,
R.
,
Donahue
,
J.
,
Darrell
,
T.
, and
Malik
,
J.
,
2014
, “
Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation
,” Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition
, Columbus, OH, June 23–28, pp.
580
587
.https://www.cvfoundation.org/openaccess/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf
22.
Girshick
,
R.
,
2015
, “
Fast R-CNN
,” Proceedings of the
IEEE International Conference on Computer Vision
, Santiago, Chile, Dec. 7–13, pp.
1440
1448
.10.1109/ICCV.2015.169
23.
Redmon
,
J.
,
Divvala
,
S.
,
Girshick
,
R.
, and
Farhadiq
,
A.
,
2016
, “
You Only Look Once: Unified, Real-Time Object Detection
,” Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
, Las Vegas, NV, June 27–30, pp.
779
788
.https://www.cvfoundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf
24.
Liu
,
W.
,
Anguelov
,
D.
,
Erhan
,
D.
,
Szegedy
,
C.
,
Reed
,
S.
,
Fu
,
C.
, and
Berg
,
A. C.
,
2016
, “
SSD: Single Shot Multibox Detector
,”
Comput. Vision Pattern Recognit.
,
9905
, pp.
21
37
.10.1007/978-3-319-46448-0
You do not currently have access to this content.