Abstract

This paper proposes an integral hydrobulge forming (IHBF) method using a triangular patch polyhedron as the closed preform shell. When triangular flat parts are welded along the edges in sequence, triangular patch polyhedra are naturally formed. From the radius of the spherical pressure vessel, a design formula was derived to calculate the side lengths of the triangular flat plate parts. The water pressure, water volume, average strain of molding, and amount of springback after molding, which are necessary for implementing the IHBF for practical use, were also formulated. To verify the forming performance of the spherical pressure vessel using IHBF method, the finite element method was carried out, and a stainless-steel spherical pressure vessel with a thickness of 1.0 mm and a diameter of approximately 500 mm was fabricated using the proposed IHBF method. As a result, the measured shape error expressed as roundness to diameter ratio was 0.52%, and the calculated average plastic strain was 0.02, which was approximately 1/19 times of the forming limit strain of the material. The amount of springback after forming by calculation was approximately 0.7 mm, indicating that the amount of water required for IHBF was 5.90% of the volume of the spherical pressure vessel, while the required water pressure was no bigger than 2.3 MPa. The process directly utilizes triangular flat plate parts, eliminating the need for molds to process closed preform shells resulting in a low average plastic strain during forming, thereby improving the quality of the formed spherical pressure vessels.

References

1.
Lee
,
H. S.
,
Yoon
,
J. H.
,
Park
,
J. S.
, and
Yi
,
Y. M.
,
2005
, “
A Study on Failure Characteristic of Spherical Pressure Vessel
,”
J. Mater. Process. Tech.
,
164-165
, pp.
882
888
.10.1016/j.jmatprotec.2005.02.208
2.
Cheng
,
B.
,
Huang
,
J. X.
, and
Shan
,
Y.
,
2015
, “
The Economic Design and Analysis for Mixed Model Spherical Tank Shell Angle Partition
,”
Proc. Eng.
,
130
, pp.
41
47
.10.1016/j.proeng.2015.12.173
3.
Arabzadeh
,
V.
,
Niaki
,
S. T. A.
, and
Arabzadeh
,
V.
,
2018
, “
Construction Cost Estimation of Spherical Storage Tanks: Artificial Neural Networks and Hybrid Regression—GA Algorithms
,”
J. Ind., Eng., Int.
,
14
, pp.
747
756
.10.1007/s40092-017-0240-8
4.
Aleksandar
,
M.
, and
Aleksandar
,
S.
,
2018
, “
Integrity Assessment of Ammonia Spherical Storage Tank
,”
Proc. Struct. Int.
,
13
, pp.
994
999
.https://machinery.mas.bg.ac.rs/bitstream/id/1502/2801.pdf
5.
Oyelami
,
A. T.
, and
Olusunle
,
S. O. O.
,
2019
, “
Spherical Storage Tank Development Through Mathematical Modeling of Constituent Sections
,”
Math. Modell. Eng. Prob.
,
6
(
3
), pp.
467
473
.10.18280/mmep.060320
6.
Ibrahim
,
A.
,
Ryu
,
Y.
, and
Saidpour
,
M.
,
2015
, “
Stress Analysis of Thin-Walled Pressure Vessels
,”
Mod. Mech. Eng.
,
5
, pp.
1
9
.10.4236/mme.2015.51001
7.
Petrovic
,
R.
,
Zivkovic
,
M.
,
Topalovic
,
M.
, and
Slavkovic
,
R.
,
2015
, “
Analytical, Numerical and Experimental Stress Assessment of the Spherical Tank With Large Volume
,”
Tehniki Vjesnik
,
22
(
5
), pp.
1135
1140
.10.17559/TV-20130905131504
8.
Afkar
,
A.
,
Camiri
,
M. N.
, and
Paykani
,
A.
,
2014
, “
Design and Analysis of a Spherical Pressure Vessel Using Finite Element Method
,”
Wor. J. Modell. Simul.
,
10
(
2
), pp.
126
135
.https://pdf4pro.com/view/design-and-analysis-of-aspherical-pressure-vessel-using-516abd.html
9.
Pan
,
B.
, and
Cui
,
W.
,
2010
, “
An Overview of Buckling and Ultimate Strength of Spherical Pressure Hull Under External Pressure
,”
Marine Struct.
,
23
, pp.
227
240
.10.1016/j.marstruc.2010.07.005
10.
Adeyefa
,
O. A.
, and
Oluwole
,
O. O.
,
2011
, “
Finite Element Analysis of Von-Mises Stress Distribution in a Spherical Shell of Liquified Natural Gas (Lng) Pressure Vessels
,”
Engineering
,
3
(
10
), pp.
1012
1017
.10.4236/eng.2011.310125
11.
Yang
,
Z. R.
,
Shou
,
B. N.
,
Sun
,
L.
, and
Wang
,
J. J.
,
2011
, “
Earthquake Response Analysis of Spherical Tanks With Seismic Isolation
,”
Proc. Eng.
,
14
, pp.
1879
1886
.10.1016/j.proeng.2011.07.236
12.
Drosos
,
G. C.
,
Dimas
,
A. A.
, and
Karabalis
,
D. L.
,
2008
, “
Discrete Models for Seismic Analysis of Liquid Storage Tanks of Arbitrary Shape and Fill Height
,”
ASME J. Pressure Vessel Technol.
,
130
(
4
), p.
041801
.10.1115/1.2967834
13.
Faltinsen
,
O. M.
, and
Timokha
,
A. N.
,
2012
, “
Analytically Approximate Natural Sloshing Modes for a Spherical Tank Shape
,”
J. Fluid Mech.
,
703
, pp.
391
401
.10.1017/jfm.2012.237
14.
Ai-Khafaji
,
M. S.
,
Mohammed
,
A. S.
, and
Salman
,
M. A.
,
2021
, “
ANSYS-Based Structural Analysis Study of Elevated Spherical Tank Exposed to Earthquake
,”
Eng. Tech. J.
,
39
(
6
), pp.
870
883
.10.30684/etj.v39i6.460
15.
Jiang
,
C.
,
Du
,
Y.
,
Zhang
,
X.
, and
Pan
,
W.
,
2021
, “
Analysis and Treatment of Cracks in LPG Spherical Tank
,”
J. Phys. Conf. Ser.
,
1820
, p.
012065
.10.1088/1742-6596/1820/1/012065
16.
Shokrollahi
,
H.
,
2017
, “
Elastic-Plastic Analysis of Functionally Graded Spherical Pressure Vessels Using Strain Gradient Plasticity
,”
Int. J. App. Mech.
,
9
(
8
), p.
1750118
.10.1142/S1758825117501186
17.
Adibi-Asl
,
R.
, and
Livieri
,
P.
,
2007
, “
Analytical Approach in Autofrettaged Spherical Pressure Vessels Considering the Bauschinger Effect
,”
ASME J. Pressure Vessel Technol.
,
129
(
3
), pp.
411
419
.10.1115/1.2748839
18.
Yuan
,
S.
,
2021
, “
Fundamentals and Processes of Fluid Pressure Forming Technology for Complex Thin-Walled Components
,”
Engineering
,
7
(
3
), pp.
358
366
.10.1016/j.eng.2020.08.014
19.
Yuan
,
S.
, and
Fan
,
X.
,
2019
, “
Developments and Perspectives on the Precision Forming Processes for Ultra-Large Size Integrated Components
,”
Int. J. Exterm. Manuf.
,
1
(
2
), p.
022002
.10.1088/2631-7990/ab22a9
20.
Colin
,
B.
,
Jonathan
,
C.
,
Nicola
,
Z.
, and
David
,
S.
,
2020
, “
A State of the Art Review of Hydroforming Technology
,”
Int. J. Mater. Forming
,
13
, pp.
789
828
.10.1007/s12289-019-01507-1
21.
Wang
,
Z. R.
,
Dai
,
K.
,
Yuan
,
S.
,
Zeng
,
Y.
, and
Zhang
,
X.
,
2000
, “
The Development of Integral Hydro-Bulge Forming (IHBF) Process and Its Numerical Simulation
,”
J. Mater. Process. Technol.
,
102
, pp.
168
173
.10.1016/S0924-0136(00)00406-4
22.
Zhang
,
S. H.
,
Zheng
,
Y. S.
, and
Wang
,
Z. R.
,
1996
, “
Theoretical Analysis and Experimental Research Into the Integral Hydro-Bulge Forming of Oblate Shells
,”
J. Mater. Process. Technol.
,
62
(
1–3
), pp.
199
205
.10.1016/0924-0136(95)02230-9
23.
Zhang
,
S. H.
,
Jiang
,
L.
, and
Wang
,
Z. R.
,
1995
, “
The Integral Hydro-Bulge Forming of Double-Layer Gap Spherical Vessels
,”
J. Mater. Process. Technol.
,
55
(
1
), pp.
11
18
.10.1016/0924-0136(95)01804-2
24.
Zhang
,
S. H.
,
Nielsen
,
K. B.
,
Danckert
,
J.
, and
Wang
,
Z. R.
,
1999
, “
Numerical Simulation of the Integral Hydro-Bulge Forming of Non-Clearance Double-Layer Spherical Vessels: Deformation Analysis
,”
Comput. Struct.
,
70
(
2
), pp.
243
256
.10.1016/S0045-7949(98)00159-X
25.
Zhang
,
S. H.
,
Nielsen
,
K. B.
,
Danckert
,
J.
, and
Wang
,
Z. R.
,
1998
, “
Numerical Simulation of the Integral Hydro-Bulge Forming of Non-Clearance Double-Layer Spherical Vessels: Analysis of the Stress State
,”
J. Mater. Process. Technol.
,
75
(
1–3
), pp.
212
221
.10.1016/S0924-0136(97)00367-1
26.
Hashemi
,
J.
,
Rasty
,
J.
,
Li
,
S.
, and
Tseng
,
A. A.
,
1993
, “
Integral Hydro-Bulge Forming of Single and Multi-Layered Spherical Pressure Vessels
,”
ASME J. Pressure Vessel Technol.
,
115
(
3
), pp.
249
255
.10.1115/1.2929524
27.
Hu
,
W.
, and
Wang
,
Z. R.
,
2004
, “
Deformation Analyses of the Integrated Hydro-Bulge Forming of a Spheroidal Vessel From Different Preform Types
,”
J. Mater. Process. Technol.
,
151
(
1–3
), pp.
275
283
.10.1016/j.jmatprotec.2004.04.112
28.
Wang
,
Z. R.
,
Liu
,
G.
,
Yuan
,
S. J.
,
Teng
,
B. G.
, and
He
,
Z. B.
,
2005
, “
Progress in Shell Hydroforming
,”
J. Mater. Process. Technol.
,
167
(
2–3
), pp.
230
236
.10.1016/j.jmatprotec.2005.05.045
29.
Coxeter
,
H. S. M.
,
1973
, “
Regular Polytopes
,”
Dover Publications
, Mineola, NY.
30.
Campos
,
H. B.
,
Butuc
,
M. C.
,
Gracio
,
J. J.
,
Rocha
,
J. E.
, and
Duarte
,
J. M. F.
,
2006
, “
Theorical and Experimental Determination of the Forming Limit Diagram for the AISI 304 Stainless Steel
,”
J. Mater. Process. Technol.
,
179
(
1–3
), pp.
56
60
.10.1016/j.jmatprotec.2006.03.065
You do not currently have access to this content.