Abstract

Failure assessment diagrams (FADs) constitute a well-known structural integrity evaluation tool that allows structural components containing crack-like defects to be assessed through a simultaneous analysis of fracture and plastic-collapse processes. FADs are included in the most recognized structural integrity assessment procedures/standards, such as BS7910 and API 579/ASME FFS-1, and their use is generally limited to metallic components containing crack-like defects. On the other hand, structural responsibilities are being assumed by three-dimensional-printed composites, and particularly by those obtained through FFF (fused filament fabrication), beyond their most extended use as prototyping materials. The resulting structural components may contain notch-type defects (e.g., grooves, corners, holes) that determine their corresponding structural integrity. Thus, it is necessary to define structural integrity assessment criteria for this kind of materials when containing any kind of stress risers, beyond crack-like defects. This work justifies the use of BS7910 Level 1 FAD, coupled with a notch correction derived from the theory of critical distances (TCD), to analyze graphene-reinforced polylactic acid (PLA) plates subjected to pure tensile loading conditions and containing U- and V-notches. The results reveal that, for U- and V-notches, the assessment points representing the plates at failure are located within the FAD area corresponding to unsafe conditions, providing conservative evaluations with moderate safety margins. For plates containing circular holes, the proposed approach provides unsafe predictions.

References

1.
BS 7910:2019
,
2019
,
Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures
,
British Standard Institution
,
London, UK
.
2.
API 579-1/ASME FFS-1
,
2016
, ASME, 3rd ed.,
New York
.
3.
Taylor
,
D.
,
2007
,
The Theory of Critical Distances
,
Elsevier
,
Oxford, UK
.
4.
Cicero
,
S.
,
Madrazo
,
V.
,
García
,
T.
,
Cuervo
,
J.
, and
Ruiz
,
E.
,
2013
, “
On the Notch Effect in Load Bearing Capacity, Apparent Fracture Toughness and Fracture Mechanisms of Polymer PMMA, Aluminium Alloy Al7075-T651 and Structural Steels S275JR and S355J2
,”
Eng. Fail. Anal.
,
29
, pp.
108
121
.10.1016/j.engfailanal.2012.11.010
5.
Cicero
,
S.
,
Madrazo
,
V.
, and
García
,
T.
,
2014
, “
Analysis of Notch Effect in the Apparent Fracture Toughness and the Fracture Micromechanisms of Ferritic-Pearlitic Steels Operating Within Their Lower Shelf
,”
Eng. Fail. Anal.
,
36
, pp.
322
342
.10.1016/j.engfailanal.2013.10.021
6.
Cicero
,
S.
,
Gutierrez-Solana
,
F.
, and
Horn
,
A. J.
,
2009
, “
Experimental Analysis of Differences in Mechanical Behaviour of Cracked and Notched Specimens in a Ferritic-Pearlitic Steel: Considerations About the Notch Effect on Structural Integrity
,”
Eng. Fail. Anal.
,
16
(
7
), pp.
2450
2466
.10.1016/j.engfailanal.2009.04.003
7.
Sih
,
G. C.
,
1974
, “
Strain-Energy-Density Factor Applied to Mixed Mode Crack Problems
,”
Int. J. Fract.
,
10
(
3
), pp.
305
321
.10.1007/BF00035493
8.
Cicero
,
S.
,
Madrazo
,
V.
,
Carrascal
,
I. A.
, and
Cicero
,
R.
,
2011
, “
Assessment of Notched Structural Components Using Failure Assessment Diagrams and the Theory of Critical Distances
,”
Eng. Fract. Mech.
,
78
(
16
), pp.
2809
2825
.10.1016/j.engfracmech.2011.08.009
9.
Cantrell
,
J. T.
,
Rohde
,
S.
,
Damiani
,
D.
,
Gurnani
,
R.
,
DiSandro
,
L.
,
Anton
,
J.
,
Young
,
A.
, et al.,
2017
, “
Experimental Characterization of the Mechanical Properties of 3D-Printed ABS and Polycarbonate Parts
,”
Rapid Prototyping J.
,
23
(
4
), pp.
811
824
.10.1108/RPJ-03-2016-0042
10.
Bamiduro
,
O.
,
Owolabi
,
G.
,
Haile
,
M. A.
, and
Riddick
,
J. C.
,
2019
, “
The Influence of Load Direction, Microstructure, Raster Orientation on the Quasi-Static Response of Fused Deposition Modeling ABS
,”
Rapid Prototyping J.
,
25
(
3
), pp.
462
472
.10.1108/RPJ-04-2018-0087
11.
Ahn
,
S.
,
Montero
,
M.
,
Odell
,
D.
,
Roundy
,
S.
, and
Wright
,
P. K.
,
2002
, “
Anisotropic Material Properties of Fused Deposition Modeling ABS
,”
Rapid Prototyping J.
,
8
(
4
), pp.
248
257
.10.1108/13552540210441166
12.
Ng
,
C. T.
, and
Susmel
,
L.
,
2020
, “
Notch Static Strength of Additively Manufactured Acrylonitrile Butadiene Styrene (ABS)
,”
Addit. Manuf.
,
34
, p.
101212
.10.1016/j.addma.2020.101212
13.
Cicero
,
S.
,
Martínez-Mata
,
V.
,
Alonso-Estebanez
,
A.
,
Castanon-Jano
,
L.
, and
Arroyo
,
B.
,
2020
, “
Analysis of Notch Effect in 3D-Printed ABS Fracture Specimens Containing U-Notches
,”
Materials
,
13
(
21
), p.
4716
.10.3390/ma13214716
14.
Ameri
,
B.
,
Taheri-Behrooz
,
F.
, and
Aliha
,
M. R. M.
,
2020
, “
Fracture Loads Prediction of the Modified 3D-Printed ABS Specimens Under Mixed-Mode I/II Loading
,”
Eng. Fract. Mech.
,
235
, p.
107181
.10.1016/j.engfracmech.2020.107181
15.
Mustafa
,
M. A.
,
Raja
,
S.
,
Asadi
,
L. A. A. L.
,
Jamadon
,
N. H.
,
Rajeswari
,
N.
, and
Kumar
,
A. P.
,
2023
, “
A Decision-Making Carbon Reinforced Material Selection Model for Composite Polymers in Pipeline Applications
,”
Adv. Polym. Technol.
,
2023
, pp.
1
9
.10.1155/2023/6344193
16.
Bouzid
,
A. H.
,
Vafadar
,
A. K.
, and
Ngô
,
A. D.
,
2021
, “
On the Modeling of Anisotropic Fiber-Reinforced Polymer Flange Joints
,”
ASME J. Pressure Vessel Technol.
,
143
(
6
), p.
061506
.10.1115/1.4051365
17.
Fuentes
,
J. D.
,
Cicero
,
S.
,
Ibáñez‐Gutiérrez
,
F. T.
, and
Procopio
,
I.
,
2018
, “
On the Use of British Standard 7910 Option 1 Failure Assessment Diagram to Non-Metallic Materials
,”
Fatigue Fract. Eng. Mater. Struct.
,
41
(
1
), pp.
146
158
.10.1111/ffe.12668
18.
Martínez
,
M.
,
Cano
,
A. J.
,
Salazar
,
A.
, and
Rodríguez
,
J.
,
2022
, “
On the Failure Assessment Diagram Methodology in Polyamide 12
,”
Eng. Fract. Mech.
,
269
, p.
108558
.10.1016/j.engfracmech.2022.108558
19.
Cicero
,
S.
,
Sánchez
,
M.
,
Martínez-Mata
,
V.
,
Arrieta
,
S.
, and
Arroyo
,
B.
,
2022
, “
Structural Integrity Assessment of Additively Manufactured ABS, PLA and Graphene Reinforced PLA Notched Specimens Combining Failure Assessment Diagrams and the Theory of Critical Distances
,”
Theor. Appl. Fract. Mech.
,
121
, p.
103535
.10.1016/j.tafmec.2022.103535
20.
Cicero
,
S.
,
Arrieta
,
S.
,
Sanchez
,
M.
, and
Castanon-Jano
,
L.
,
2023
, “
Analysis of Additively Manufactured Notched PLA Plates Using Failure Assessment Diagrams
,”
Theor. Appl. Fract. Mech.
,
125
, p.
103926
.10.1016/j.tafmec.2023.103926
21.
Cicero
,
S.
,
Martínez-Mata
,
V.
,
Castanon-Jano
,
L.
,
Alonso-Estebanez
,
A.
, and
Arroyo
,
B.
,
2021
, “
Analysis of Notch Effect in the Fracture Behaviour of Additively Manufactured PLA and Graphene Reinforced PLA
,”
Theor. Appl. Fract. Mech.
,
114
, p.
103032
.10.1016/j.tafmec.2021.103032
22.
Valvez
,
S.
,
Silva
,
A. P.
, and
Reis
,
N. B.
,
2022
, “
Optimization of Printing Parameters to Maximize the Mechanical Properties of 3D-Printed PETG-Based Parts
,”
Polymer
,
14
(
13
), p.
2564
.10.3390/polym14132564
23.
Miller
,
A. G.
,
1988
, “
Review of Limit Loads of Structures Containing Defects
,”
Int. J. Pressure Vessel Piping
,
32
(
1–4
), pp.
197
327
.10.1016/0308-0161(88)90073-7
24.
Horn
,
A. J.
, and
Sherry
,
A. H.
,
2012
, “
An Engineering Assessment Methodology for Non-Sharp Defects in Steel structures- Part I: Procedure Development
,”
Int. J. Pressure Vessel. Piping
,
89
, pp.
137
150
.10.1016/j.ijpvp.2011.10.014
25.
Creager
,
M.
, and
Paris
,
P. C.
,
1967
, “
Elastic Field Equations for Blunt Cracks With Reference to Stress Corrosion Cracking
,”
Int. J. Fract. Mech.
,
3
(
4
), pp.
247
252
.10.1007/BF00182890
26.
Lazzarin
,
P.
, and
Berto
,
F.
,
2005
, “
Some Expressions for the Strain Energy in a Finite Volume Surrounding the Root of Blunt V-Notches
,”
Int. J. Fract.
,
135
(
1–4
), pp.
161
185
.10.1007/s10704-005-3943-6
27.
Anderson
,
T. L.
,
2005
,
Fracture Mechanics: Fundamentals and Applications
, 4th ed.,
CRC Press
,
Boca Raton, FL
.
28.
Kocak
,
M.
,
Webster
,
S.
,
Janosch
,
J. J.
,
Ainsworth
,
R. A.
, and
Koers
,
R.
,
2008
,
FITNET Fitness-For service (FFS) Procedure
, Vol.
1
,
GKSS Hamburg
,
Germany
.
29.
ASTM D6068-10 2018
,
2018
,
Standard Test Method for Determining J-R Curves of Plastic Materials
,
ASTM International
,
West Conshohocken, PA
.
30.
ASTM D5045-14
,
2014
,
Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials
,
ASTM International
,
West Conshohocken, PA
.
You do not currently have access to this content.