Abstract

Creep is an important damage mode of components at elevated temperatures, and the temperature and time-dependent stress intensity limit St is an essential indicator in creep assessment of components. In general, the safety factors are directly applied to three criteria in stress intensity limit St in ASME code, but a quantitative evaluation on the failure probability covered in this indicator is rarely reported. Based on this, a probabilistic evaluation method on stress intensity limit St is proposed by correlating each criterion with mean creep rupture life data. The failure probability of three criteria in stress intensity limit St of 316 and 304 stainless steels is calculated, and the effect of safety factors on failure probability results is discussed. A probabilistic evaluation on stress intensity limit St is conducted. Results indicate that the stress intensity limit St presents a low failure probability or high conservativeness, and the minimum stress to creep rupture is the governing role in stress intensity limit St for cases involved. The failure probability of stress intensity limit St of 316 stainless steel is much lower than that of 304 stainless steel, attributed to the differences of creep deformation features and data scatter of the two stainless steels.

References

1.
Gong
,
J. G.
,
Xia
,
Q. W.
, and
Xuan
,
F. Z.
,
2017
, “
Evaluation of Simplified Creep Design Methods Based on the Case Analysis of Tee Joint at Elevated Temperature
,”
ASME J. Pressure Vessel Technol.
,
139
(
4
), p.
041412
.10.1115/1.4036533
2.
Hayner
,
G. O.
,
Bratton
,
R. L.
, and
Mizia
,
R. E.
,
2005
, “
Next Generation Nuclear Plant Materials Research and Development Program Plan
,”
Idaho National Laboratory (INL)
,
Idaho Falls, ID
, Report No. INL/EXT-05-00758.
3.
Chetal
,
S. C.
,
Balasubramaniyan
,
V.
,
Chellapandi
,
P.
,
Mohanakrishnan
,
P.
,
Puthiyavinayagam
,
P.
,
Pillai
,
C. P.
,
Raghupathy
,
S.
,
Shanmugham
,
T. K.
, and
Sivathanu
,
P. C.
,
2006
, “
The Design of the Prototype Fast Breeder Reactor
,”
Nucl. Eng. Des.
,
236
(
7–8
), pp.
852
860
.10.1016/j.nucengdes.2005.09.025
4.
Lückemeyer
,
N.
,
2012
, “
Structural Mechanics Design Concepts for Large 700 °C Steam Turbine Components
,”
MPA 2012 Seminar
,
The University of Stuttgart
,
Stuttgart
, Germany.10.18419/opus-6434
5.
Blum
,
R.
, and
Vanstone
,
R. W.
,
2006
, “
Materials Development for Boilers and Steam Turbines Operating at 700 °C
,”
Conference of Advanced Materials for Power Engineering 2006
,
Liege, Belgium
, Report No. ETDE-DE-1646, pp.
41
60
.
6.
Liu
,
Y.
, and
Murakami
,
S.
,
1998
, “
Damage Localization of Conventional Creep Damage Models and Proposition of a New Model for Creep Damage Analysis
,”
JSME Int. J. Ser. A
,
41
(
1
), pp.
57
65
.10.1299/jsmea.41.57
7.
Cocks
,
A. C. F.
, and
Ashby
,
M. F.
,
1980
, “
Intergranular Fracture During Power-Law Creep Under Multiaxial Stresses
,”
Met. Sci.
,
14
(
8–9
), pp.
395
402
.10.1179/030634580790441187
8.
Rice
,
J. R.
, and
Tracey
,
J. R.
,
1969
, “
On the Ductile Enlargement of Voids in Triaxial Stress Field
,”
J. Mech. Phys. Solids
,
17
(
3
), pp.
201
217
.10.1016/0022-5096(69)90033-7
9.
Klenk
,
A.
,
Maile
,
K.
,
Buhl
,
P.
, and
Speicher
,
M.
,
2013
, “
Advanced Method for Life Time Analysis of Creep Loaded Components in Steam Power Plants
,”
39th MPA Seminar
, Stuttgart, Germany, Oct. 8–9 pp.
1
11
.https://www.scribd.com/document/459999286/Advanced-methods-for-life-time-analysis-of-creep-loaded-components-in-steam-power-plants
10.
Graham
,
A.
, and
Walles
,
K. F. A.
,
1955
, “
Relationships Between Long and Short Time Creep and Tensile Properties of a Commercial Alloy
,”
J. Iron Steel Inst.
,
179
, pp.
105
120
.
11.
Xu
,
X.
,
Wang
,
G. Z.
,
Xuan
,
F. Z.
, and
Tu
,
S. T.
,
2016
, “
Effects of Creep Ductility and Notch Constraint on Creep Fracture Behavior in Notched Bar Specimens
,”
Mater. High Temp.
,
33
(
2
), pp.
198
207
.10.1080/09603409.2016.1144498
12.
Yatomi
,
M.
,
Nikbin
,
K. M.
, and
O'Dowd
,
N. P.
,
2003
, “
Creep Crack Growth Prediction Using a Damage Based Approach
,”
Int. J. Pressure Vessels Piping
,
80
(
7–8
), pp.
573
583
.10.1016/S0308-0161(03)00110-8
13.
Wen
,
J. F.
, and
Tu
,
S. T.
,
2014
, “
A Multiaxial Creep-Damage Model for Creep Crack Growth Considering Cavity Growth and Microcrack Interaction
,”
Eng. Fract. Mech.
,
123
, pp.
197
210
.10.1016/j.engfracmech.2014.03.001
14.
EPRI
,
2013
, “
Plant Engineering: Guideline for the Acceptance of Commercial-Grade Design and Analysis Computer Programs Used in Nuclear Safety Related Applications: Revision 1 of 1025243
,” EPRI,
Palo Alto, CA
, Report No.
3002002289
.https://www.epri.com/research/products/3002002289
15.
Weber
,
M. A.
,
1989
,
Study of Machine Elements Using Finite Element Methods
,
University of Cape Town
,
Cape Town
.
16.
EDF-Energy
,
2012
, “
R5-Assessment Procedure for the High Temperature Response of Structures
,” EDF-Energy, London, UK.
17.
ASME
,
2023
,
ASME Boiler and Pressure Vessel Code, Section III, Rules for Construction of Nuclear Facility Components
,
ASME
,
New York
.
18.
RCC-MRx
,
2015
,
Design and Construction Rules for Mechanical Components of Nuclear Installations: High Temperature, Research and Fusion Reactors
,
Afcen
,
Paris
.
19.
Dabrow
,
T.
, and
Nestell
,
J.
,
2021
,
Impact of Tertiary Creep on Time Dependent Allowable Stresses for Type 304H and 316H Stainless Steels
,
Argonne National Laboratory
,
Argonne
.
20.
Sengupta
,
M.
, and
Nestell
,
J.
,
2013
,
STP-NU-063: Correct and Extend Allowable Stress Values for 304 and 316 Stainless Steel
,
ASME Standards Technology
,
New York
.
21.
Pataky
,
G. J.
,
Sehitoglu
,
H.
, and
Maier
,
H. J.
,
2013
, “
Creep Deformation and Mechanisms in Haynes 230 at 800 °C and 900 °C
,”
J. Nucl. Mater.
,
443
(
1–3
), pp.
484
490
.10.1016/j.jnucmat.2013.08.009
22.
Barrett
,
P. R.
, and
Hassan
,
T.
,
2015
, “
A Unified Viscoplastic Model for Creep and Fatigue-Creep Response Simulation of Haynes 230
,”
ASME
Paper No. PVP2015-45671.10.1115/PVP2015-45671
23.
Maldini
,
M.
,
Angella
,
G.
, and
Lupinc
,
V.
,
2009
, “
Analysis of Creep Curves of Haynes 230 Superalloy
,”
International Conference on Processing & Manufacturing of Advanced Materials
, Maritim, Germany, Aug. 25–29, Vol. 638–642, pp.
2285
2290
.10.4028/www.scientific.net/MSF.638-642.2285
24.
Mo
,
K.
,
Lv
,
W.
,
Tung
,
H. M.
,
Yun
,
D.
,
Miao
,
Y.
, and
Stubbins
,
J. F.
,
2014
, “
Biaxial Thermal Creep of Alloy 617 and Alloy 230 for VHTR Applications
,”
ASME
Paper No. MATS-14-1131.10.1115/MATS-14-1131
25.
Spindler
,
M. W.
,
2004
, “
The Multiaxial Creep Ductility of Austenitic Stainless Steels
,”
Fatigue Fract. Eng. Mater. Struct.
,
27
(
4
), pp.
273
281
.10.1111/j.1460-2695.2004.00732.x
26.
Baddoo
,
N. R.
,
2008
, “
Stainless Steel in Construction: A Review of Research, Applications, Challenges and Opportunities
,”
J. Constr. Steel Res.
,
64
(
11
), pp.
1199
1206
.10.1016/j.jcsr.2008.07.011
27.
Mathew
,
M. D.
,
2010
, “
Evolution of Creep Resistant 316 Stainless Steel for Sodium Cooled Fast Reactor Applications
,”
Trans. Indian Inst. Met.
,
63
(
2–3
), pp.
151
158
.10.1007/s12666-010-0021-1
28.
Holmström
,
S.
,
Pohja
,
R.
,
Nurmela
,
A.
,
Moilanen
,
P.
, and
Auerkari
,
P.
,
2013
, “
Creep and Creep-Fatigue Behaviour of 316 Stainless Steel
,”
6th International Conference on Creep, Fatigue and Creep-Fatigue Interaction (CF)
,
Mamallapuram, India
, Jan. 22–25, pp.
160
164
.10.1016/j.proeng.2013.03.236
29.
McMurtrey
,
M.
, and
Wright
,
R.
,
2021
,
Recommendation for Limiting Conditions for ASME BPVC Section III Division 5 Allowable Stress Criteria
,
Idaho National Laboratory
,
Idaho Falls, ID
.
You do not currently have access to this content.