One of the major loss mechanisms in state of the art photovoltaic cells is spectral loss resulting from inefficient use of ultraviolet photons and the lack of absorption of infrared photons by the solar cell. For a Si solar cell, e.g., spectral losses alone result in over 55% loss of the energy of the solar spectrum. Converting the spectrum of the incoming light such that it has a better match with the absorption spectrum of the solar cell can reduce spectral losses, especially in the case of a small absorption band, such as for dye sensitized solar cells and polymer solar cells. In this paper it is shown that the ultraviolet response of a multicrystalline silicon solar cell and polymer solar cell can be enhanced by application of a polymer coating doped with a luminescent dye. An increase in the power conversion efficiency is obtained for coatings with luminescent dyes with an absorption onset <450 nm. Coatings with luminescent dyes that absorb at higher wavelengths give rise to lower power conversion efficiencies. When applied to a dye sensitized solar cell, a decrease in the cell performance is observed.

1.
Hovel
,
H. J.
,
Hodgson
,
R. T.
, and
Woodall
,
J. M.
, 1979, “
The Effect of Fluorescent Wavelength Shifting on Solar Cell Spectral Response
,”
Sol. Energy Mater.
0165-1633,
2
, pp.
19
29
.
2.
Garbuzov
,
D. Z.
,
Forrest
,
S. R.
,
Tskoun
,
A. G.
,
Burrows
,
P. E.
,
Bulović
,
V.
, and
Thompson
,
M. E.
, 1996, “
Organic Films Deposited on Si P-N Junctions: Accurate Measurements of Fluorescence Internal Efficiency, and Application to Luminescent Antireflection Coatings
,”
J. Appl. Phys.
0021-8979,
80
, pp.
4644
4648
.
3.
Maruyama
,
T.
,
Shinyashiki
,
Y.
, and
Osako
,
S.
, 1998, “
Energy Conversion Efficiency of Solar Cells Coated With Fluorescent Coloring Agent
,”
Sol. Energy Mater. Sol. Cells
0927-0248,
56
, pp.
1
6
.
4.
Maruyama
,
T.
, and
Kitamura
,
R.
, 2001, “
Transformations of the Wavelength of the Light Incident Upon CdS∕CdTe Solar Cells
,”
Sol. Energy Mater. Sol. Cells
0927-0248,
69
, pp.
61
68
.
5.
Jang
,
X.
,
Loos
,
J.
,
Veenstra
,
S. C.
,
Verhees
,
W. J. H.
,
Wienk
,
M. M.
,
Kroon
,
J. M.
,
Michels
,
M. A. J.
, and
Janssen
,
R. A. J.
, 2005, “
Nanoscale Morphology of High-Performance Polymer Solar Cells
,”
Nano Lett.
1530-6984,
5
, pp.
579
593
.
6.
Späth
,
M.
,
Sommeling
,
P. M.
,
van Roosmalen
,
J. A. M.
,
Smit
,
H. J. P.
,
van der Burg
,
N. P. G.
,
Mahieu
,
D. R.
,
Bakker
,
N. J.
, and
Kroon
,
J. M.
, 2003, “
Reproducible Manufacturing of Dye-Sensitized Solar Cells on a Semi-Automated Baseline
,”
Prog. Photovoltaics
1062-7995,
11
, pp.
207
220
.
7.
NREL ASTM G173 database, 2003, National Renewable Energy Laboratory, Golden, CO, http://rredc.nrel.gov/solar/spectra/am1.5/http://rredc.nrel.gov/solar/spectra/am1.5/
8.
van Sark
,
W. G. J. H. M.
,
De Mello Donegá
,
C.
,
Harkisoen
,
C.
,
Kinderman
,
R.
,
van Roosmalen
,
J. A. M.
,
Schropp
,
R. E. I.
, and
Lysen
,
E. H.
, 2004, “
Improvement of Spectral Response of Solar Cells by Deployment of Spectral Converters Containing Semiconductor Nanocrystals
,”
Proc. of the 19th European Solar Energy Conference
, Paris, June 7–11, pp.
38
41
.
9.
For the Lumogen F dyes QY data can be found on http://www.basf.dehttp://www.basf.de; reported QY are in the range >90%; BASF Aktiengesellschaft, EVP/EA - J550, D-67056, Ludwigshafen, Germany.
10.
van Roosmalen
,
J. A. M.
, 2004, “
Molecular-Based Concepts in PV Towards FullSpectrum Utilization
,”
Semiconductors
1063-7826,
38
, pp.
970
975
.
11.
Rau
,
U.
,
Einsele
,
F.
, and
Glaeser
,
G. C.
, 2005, “
Efficiency Limits of Photovoltaic Fluorescent Collectors
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
171101
.
You do not currently have access to this content.