Abstract

Individual performance of photovoltaic (PV) modules is contravened by mismatch losses which result in blockage in most of the solar power generated by the PV array (PVA). Partial shading conditions (PSCs) are the main causes of these losses. Several techniques have been discussed to reduce the issues caused by PSCs. Reconfiguration techniques have been proven to be one of the most successful methods that help toward this cause. In this method, the location of PV module (PVM) in the PVA is reconfigured so that the shading effects get distributed throughout the entire array and, hence, maximizing the power output. Two novel reconfiguration patterns such as canonical SuDoKu (CS) and multi diagonal SuDoKu (MDS) for total cross tied (TCT) configuration have been put forth in this paper. This approach aims to rearrange the PVMs in the TCT array as per the fed-in patterns without causing a change in the internal electrical connections. Further parts of the paper focus on the comparison of the proposed pattern's performance with other pre-existing PVA arrangements such as, TCT, SuDoKu, optimal SuDoKu (OS), and modified SuDoku (MS) by taking into account the effects of global maximum power (GMP) point, mismatch power loss, fill factor, and performance ratio. The results obtained from the detailed analysis presented in this paper give proper evidence that, in many cases, the GMP is amplified in the CS and, in all cases, GMP is amplified in the proposed MDS PVA under different shading conditions.

References

1.
Anjum
,
S.
,
Mukherjee
,
V.
, and
Mehta
,
G.
,
2020
, “
Performance Enhancement of Photovoltaic Array Configurations With Blocking p-MOSFETS Under Partial Shading Condition
,”
Energy Sources A
, pp.
1
20
.
2.
El Iysaouy
,
L.
,
Lahbabi
,
M.
,
Baskys
,
A.
, and
Oumnad
,
A.
,
2020
, “
Performance Analysis of Partially Shaded Photovoltaic Array Using Magic Square View Configuration for Shade Dispersion
,”
ASME. J. Sol. Energy Eng.
,
142
(
6
), p.
064502
.
3.
Mäki
,
A.
, and
Valkealahti
,
S.
,
2013
, “
Effect of Photovoltaic Generator Components on the Number of MPPs Under Partial Shading Conditions
,”
IEEE Trans. Energy. Convers.
,
28
(
4
), pp.
1008
1017
.
4.
Alajmi
,
B. N.
,
Ahmed
,
K. H.
,
Finney
,
S. J.
, and
Williams
,
B. W.
,
2013
, “
A Maximum Power Point Tracking Technique for Partially Shaded Photovoltaic Systems in Microgrids
,”
IEEE Trans. Ind. Electron.
,
60
(
4
), pp.
1596
1606
.
5.
Mohapatra
,
A.
,
Nayak
,
B.
,
Das
,
P.
, and
Mohanty
,
K. B.
,
2017
, “
A Review on MPPT Techniques of PV System Under Partial Shading Condition
,”
Renew Sustain Energy Rev.
,
80
(
C
), pp.
854
867
.
6.
Pendem
,
S. R.
, and
Mikkili
,
S.
,
2018
, “
Modeling, Simulation and Performance Analysis of Solar PV Array Configurations (Series, Series–Parallel and Honey-Comb) to Extract Maximum Power Under Partial Shading Conditions
,”
Energy Rep.
,
4
, pp.
274
287
.
7.
Kaushika
,
N. D.
, and
Gautam
,
N. K.
,
2003
, “
Energy Yield Simulations of Interconnected Solar PV Arrays
,”
IEEE Trans. Energy Conv.
,
18
(
1
), pp.
127
134
.
8.
Wang
,
Y. J.
, and
Hsu
,
P. C.
,
2011
, “
An Investigation on Partial Shading of PV Modules With Different Connection Configurations of PV Cells
,”
Energy
,
36
(
5
), pp.
3069
3078
.
9.
Pendem
,
S. R.
, and
Mikkili
,
S.
,
2018
, “
Modelling and Performance Assessment of PV Array Topologies Under Partial Shading Conditions to Mitigate the Mismatching Power Losses
,”
Sol. Energy
,
160
, pp.
303
321
.
10.
Laudani
,
A.
,
Maria Lozito
,
G.
,
Lucaferri
,
V.
,
Radicioni
,
M.
, and
RigantiFulginei
,
F.
,
2018
, “
On Circuital Topologies and Reconfiguration Strategies for PV Systems in Partial Shading Conditions: A Review
,”
AIMS Energy
,
6
(
5
), pp.
735
763
.
11.
Salameh
,
Z. M.
, and
Dagher
,
F.
,
1990
, “
The Effect of Electrical Array Reconfiguration on the Performance of a PV-Powered Volumetric Water Pump
,”
IEEE Trans. Energy Conv.
,
5
(
4
), pp.
653
658
.
12.
Velasco-Quesada
,
G.
,
Guinjoan-Gispert
,
F.
,
Pique-Lopez
,
R.
,
Roman-Lumbreras
,
M.
, and
Conesa-Roca
,
A.
,
2009
, “
Electrical PV Array Reconfiguration Strategy for Energy Extraction Improvement in Grid-Connected PV Systems
,”
IEEE Trans. Ind. Electron.
,
56
(
11
), pp.
4319
4331
.
13.
Karakose
,
M.
,
Baygin
,
M.
,
Murat
,
K.
,
Baygin
,
N.
, and
Akin
,
E.
,
2016
, “
Fuzzy Based Reconfiguration Method Using Intelligent Partial Shadow Detection in PV Arrays
,”
Int. J. Comp. Intell. Syst.
,
9
(
2
), pp.
202
212
.
14.
Karakose
,
M.
,
Baygin
,
M.
, and
Parlak
,
K. S.
,
2014
, “
A New Real-Time Reconfiguration Approach Based on Neural Network in Partial Shading for PV Arrays
,”
Proceedings of ICRERA
,
Milwaukee, WI
,
Oct. 19–22
, pp.
633
637
.
15.
Mahmoud
,
Y.
, and
El-Saadany
,
E. F.
,
2017
, “
Enhanced Reconfiguration Method for Reducing Mismatch Losses in PV Systems
,”
IEEE J. Photovoltaics
,
7
(
6
), pp.
1746
1754
.
16.
Babu
,
T. S.
,
Ram
,
J. P.
,
Dragicevic
,
T.
,
Miyatake
,
M.
,
Blaabjerg
,
F.
, and
Rajasekar
,
N.
,
2018
, “
Particle Swarm Optimization Based Solar PV Array Reconfiguration of the Maximum Power Extraction Under Partial Shading Conditions
,”
IEEE Trans. Sustain. Energy
,
9
(
1
), pp.
74
85
.
17.
Rani
,
B. I.
,
Ilango
,
G. S.
, and
Nagamani
,
C.
,
2013
, “
Enhanced Power Generation From PV Array Under Partial Shading Conditions by Shade Dispersion Using SuDoKu Configuration
,”
IEEE Trans. Sustain. Energy
,
4
(
3
), pp.
594
601
.
18.
Parlak
,
,
2014
, “
PV Array Reconfiguration Method Under Partial Shading Conditions
,”
Int. J. Electr. Power Energy Syst.
,
63
, pp.
713
721
.
19.
Potnuru
,
S. R.
,
Pattabiraman
,
D.
,
Ganesan
,
S. I.
, and
Chilakapati
,
N.
,
2015
, “
Positioning of PV Panels for Reduction in Line Losses and Mismatch Losses in PV Array
,”
Renew. Energy
,
78
(
C
), pp.
264
275
.
20.
Vijayalekshmy
,
S.
,
Bindu
,
G. R.
, and
Rama Iyer
,
S. R.
,
2016
, “
A Novel Zig-Zag Scheme for Power Enhancement of Partially Shaded Solar Arrays
,”
Sol. Energy
,
135
, pp.
92
102
.
21.
Satpathy
,
P. R.
, and
Sharma
,
R.
,
2018
, “
Power Loss Reduction in Partially Shaded PV Arrays by a Static SDP Technique
,”
Energy
,
156
, pp.
569
585
.
22.
Manjunath
,
H. N. S.
,
Suresh
,
H. N.
, and
Rajanna
,
S.
,
2019
, “
Performance Enhancement of Hybrid Interconnected Solar Photovoltaic Array Using Shade Dispersion Magic Square Puzzle Pattern Technique Under Partial Shading Conditions
,”
Sol. Energy
,
194
, pp.
602
617
.
23.
Horoufiany
,
M.
, and
Ghandehari
,
R.
,
2018
, “
Optimization of the SuDoKu Based Reconfiguration Technique for PV Arrays Power Enhancement Under Mutual Shading Conditions
,”
Sol. Energy
,
159
, pp.
1037
1046
.
24.
Sai Krishna
,
G. S.
, and
Moger
,
T.
,
2019
, “
Improved SuDoKu Reconfiguration Technique for Total-Cross-Tied PV Array to Enhance Maximum Power Under Partial Shading Conditions
,”
Renew Sustain Energy Rev.
,
109
, pp.
333
348
.
25.
Kandipati
,
R.
, and
Tejavathu
,
R.
,
2020
, “
Maximum Power Enhancement Under Partial Shadings Using Modified SuDoKu Reconfiguration
,”
CSEE J. Power Energy Syst.
,
99
, pp.
1
19
.
26.
Dhanalakshmi
,
B.
, and
Rajasekar
,
N.
,
2018
, “
Dominance Square Based Array Reconfiguration Scheme for Power Loss Reduction in Solar Photovoltaic (PV) Systems
,”
Energy Convers. Manag.
,
156
, pp.
84
102
.
27.
Dhanalakshmi
,
B.
, and
Rajasekar
,
N.
,
2018
, “
A Novel Competence Square Based PV Array Reconfiguration Technique for Solar PV Maximum Power Extraction
,”
Energy Convers. Manag.
,
174
, pp.
897
912
.
28.
Venkateswari
,
R.
, and
Rajasekar
,
N.
,
2020
, “
Power Enhancement of PV System via Physical Array Reconfiguration Based Lo Shu Technique
,”
Energy Convers. Manag.
,
215
. ., PMID 112885.
29.
Malathy
,
S.
, and
Ramaprabha
,
R.
,
2015
, “
Performance Enhancement of Partially Shaded Solar Photovoltaic Array Using Grouping Technique
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
034505
.
30.
Villalva
,
M. G.
,
Gazoli
,
J. R.
, and
Filho
,
E. R.
,
2009
, “
Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays
,”
IEEE Trans. Power Electron.
,
24
(
5
), pp.
1198
1208
.
You do not currently have access to this content.