Abstract

One promising thermochemical reaction for energy storage is the hydration of hygroscopic salts. However, pure salts have poor cycle stability. The present work investigates a new composite material by impregnating a framework of crystalline nanocellulose (CNC) with calcium chloride (CaCl2). A key aspect of this material is the potential for a nanoscale, stabilizing framework provided by the CNC. Various weight ratios of CNC:CaCl2 were synthesized. The attachment of the salt to the CNC was determined by TEM and FTIR analyses. The weight loss and enthalpy of dehydration were measured after hydration at prescribed relative humidity and a fixed hydration time. The stability was determined by conducting multiple cycles. The results show that CNC can be successfully impregnated with salt. The nanocellulose binds to submicron salt particles and provides a stabilizing, nanoscale architecture. The composite material shows improved energy storage characteristics and stability. For the given hydration conditions, the CNC improves the hydration rates and allows more water to be absorbed within the hydration timeframe. This improved reaction rate can improve the enthalpy of dehydration for the fixed hydration time. Insufficient CNC (i.e., 1:10) allowed the salt particles to more easily deliquesce. With sufficient CNC framework, the CNC–salt material demonstrated improved stability by retaining structural integrity and specific enthalpy over the course of multiple cycles while pure CaCl2 deliquesced.

References

1.
EIA
,
2019
, “
Annual Energy Outlook
,” https://www.eia.gov/outlooks/aeo/.
2.
EIA
,
2019
, “
2018 Total US Energy Consumption
,” https://www.eia.gov/todayinenergy/detail.php?id=39092.
3.
Lizana
,
J.
,
Chacartegui
,
R.
,
Barrios-Padura
,
A.
, and
Valverde
,
J. M.
,
2017
, “
Advances in Thermal Energy Storage Materials and Their Applications Towards Zero Energy Buildings: A Critical Review
,”
Appl. Energy
,
203
, pp.
219
239
.
4.
Bouhssine
,
Z.
,
Najam
,
M.
, and
El Alami
,
M.
,
2016
, “
Phase Change Material for Solar Thermal Energy Storage in Buildings: Numerical Study
,”
ASME J. Sol. Energy Eng.
,
138
(
6
), p.
061006
.
5.
Bubnovich
,
V.
,
Reyes
,
A.
, and
Díaz
,
M.
,
2019
, “
Computational Simulation of the Thermal Performance of a Solar Air Heater Integrated With a Phase Change Material
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p.
051011
.
6.
Rathore
,
P. K. S.
,
Shukla
,
S. K.
, and
Gupta
,
N. K.
,
2020
, “
Synthesis and Characterization of the Paraffin/Expanded Perlite Loaded With Graphene Nanoparticles As a Thermal Energy Storage Material in Buildings
,”
ASME J. Sol. Energy Eng.
,
142
(
4
), p.
041006
.
7.
Nallusamy
,
N.
, and
Velraj
,
R.
,
2009
, “
Numerical and Experimental Investigation on a Combined Sensible and Latent Heat Storage Unit Integrated With Solar Water Heating System
,”
ASME J. Sol. Energy Eng.
,
131
(
4
), p.
041002
.
8.
Trinkl
,
C.
,
Zörner
,
W.
, and
Hanby
,
V.
,
2009
, “
Simulation Study on a Domestic Solar/Heat Pump Heating System Incorporating Latent and Stratified Thermal Storage
,”
ASME J. Sol. Energy Eng.
,
131
(
4
), p.
041008
.
9.
Hui
,
L.
,
Edem
,
N. K.
,
Nolwenn
,
L. P.
, and
Luo
,
L.
,
2011
, “
Evaluation of a Seasonal Storage System of Solar Energy for House Heating Using Different Absorption Couples
,”
Energy Convers. Manage.
,
52
(
6
), pp.
2427
2436
.
10.
N’Tsoukpoe
,
K. E.
,
Le Pierrès
,
N.
, and
Luo
,
L.
,
2012
, “
Experimentation of a LiBr-H2O Absorption Process for Long Term Solar Thermal Storage
,”
Energy Procedia
,
30
, pp.
331
341
.
11.
Zhang
,
Y.
, and
Wang
,
R.
,
2020
, “
Sorption Thermal Energy Storage: Concept, Process, Applications and Perspectives
,”
Energy Storage Mater.
,
27
(
2
), pp.
352
369
.
12.
Quinnell
,
J. A.
,
Davidson
,
J. H.
, and
Burch
,
J.
,
2011
, “
Liquid Calcium Chloride Solar Storage: Concept and Analysis
,”
ASME J. Sol. Energy Eng.
,
133
(
1
), p.
011010
.
13.
Yan
,
T.
,
Wang
,
R. Z.
,
Li
,
T. X.
,
Wang
,
L. W.
, and
Fred
,
I. T.
,
2015
, “
A Review of Promising Candidate Reactions for Chemical Heat Storage
,”
Renewable Sustainable Energy Rev.
,
43
, pp.
13
31
.
14.
Farulla
,
G. A.
,
Cellura
,
M.
,
Guarino
,
F.
, and
Ferraro
,
M.
,
2020
, “
A Review of Thermochemical Energy Storage Systems for Power Grid Support
,”
Appl. Sci.
,
10
(
9
), p.
3142
.
15.
Rammelberg
,
H. U.
,
Osterland
,
T.
,
Priehs
,
B.
,
Opel
,
O.
, and
Ruck
,
W. K. L.
,
2016
, “
Thermochemical Heat Storage Materials—Performance of Mixed Salt Hydrates
,”
Sol. Energy
,
136
, pp.
571
589
.
16.
Michel
,
B.
,
Mazet
,
N.
, and
Neveu
,
P.
,
2014
, “
Experimental Investigation of an Innovative Thermochemical Process Operating With a Hydrate Salt and Moist Air for Thermal Storage of Solar Energy: Global Performance
,”
Appl. Energy
,
129
, pp.
177
186
.
17.
van Essen
,
V. M.
,
Cot Gores
,
J.
,
Bleijendaal
,
L. P. J.
,
Zondag
,
H. A.
,
Schuitema
,
R.
,
Bakker
,
M.
, and
van Helden
,
W. G. J.
,
2009
, “
Characterization of Salt Hydrates for Compact Seasonal Thermochemical Storage
,”
ASME 2009 Third International Conference on Energy Sustain
,
San Francisco, CA
,
July 19–23
, Vol.
2
, pp.
825
830
.
18.
van Essen
,
V. M.
,
Zondag
,
H. A.
,
Cot Gores
,
J.
,
Bleijendaal
,
L. P. J.
,
Bakker
,
M.
,
Schuitema
,
R.
,
van Helden
,
W. G. J.
,
He
,
Z.
, and
Rindt
,
C. C. M.
,
2009
, “
Characterization of MgSO4 Hydrate for Thermochemical
,”
ASME J. Sol. Energy Eng.
,
131
(
4
), p.
041014
.
19.
Barreneche
,
C.
,
Fernández
,
A. I.
,
Cabeza
,
L. F.
, and
Cuypers
,
R.
,
2015
, “
Thermophysical Characterization and Thermal Cycling Stability of Two TCM: CaCl2 and Zeolite
,”
Appl. Energy
,
137
, pp.
726
730
.
20.
van Essen
,
V. M.
,
Zondag
,
H. A.
,
Schuitema
,
R.
,
van Helden
,
W. G. J.
, and
Rindt
,
C. C. M.
,
2008
, “
Materials for Thermochemical Storage: Characterization of Magnesium Sulfate
,”
Proceedings of the Eurosun 2008, First International Conference on Solar Heating, Cooling and Buildings
,
Lisbon, Portugal
,
Oct. 7–10
, pp.
4
9
.
21.
Emons
,
H. H.
,
Ziegenbalf
,
G.
,
Naumann
,
R.
, and
Paulik
,
F.
,
1990
, “
Thermal Decomposition of the Magnesium Sulfate Hydrates Under Quasi-Isothermal and Quasi-Isobaric Conditions
,”
J. Therm. Anal.
,
36
(
4
), pp.
1265
1279
.
22.
van Essen
,
V. M.
,
Bleijendaal
,
L. P. J.
,
Kikkert
,
B. W. J.
,
Zondag
,
H. A.
,
Bakker
,
M.
, and
Bach
,
P. W.
,
2010
, “
Development of a Compact Heat Storage System Based on Salt Hydrates
,”
Presented at the International Conference on Solar Heating, Cooling and Buildings
,
Graz, Austria
,
Sept. 28–Oct. 1
, pp.
1
9
.
23.
Donkers
,
P. A. J.
,
Pel
,
L.
, and
Adan
,
O. C. G.
,
2016
, “
Experimental Studies for the Cyclability of Salt Hydrates for Thermochemical Heat Storage
,”
J. Energy Storage
,
5
, pp.
25
32
.
24.
Li
,
W.
,
Zeng
,
M.
, and
Wang
,
Q.
,
2020
, “
Development and Performance Investigation of MgSO4/SrCl2 Composite Salt Hydrate for Mid-Low Temperature Thermochemical Heat Storage
,”
Sol. Energy Mater. Sol. Cells
,
210
(
11
), p.
110509
.
25.
Rehman
,
A. U.
,
Khan
,
M.
, and
Maosheng
,
Z.
,
2019
, “
Hydration Behavior of MgSO4–ZnSO4 Composites for Long-Term Thermochemical Heat Storage Application
,”
J. Energy Storage
,
26
(
10
), p.
101026
.
26.
Gordeeva
,
L. G.
, and
Aristov
,
Y. I.
,
2012
, “
Composites ‘Salt Inside Porous Matrix’ for Adsorption Heat Transformation: A Current State-of-the-Art and New Trends
,”
Int. J. Low-Carbon Technol.
,
7
(
4
), pp.
288
302
.
27.
Li
,
W.
,
Klemeš
,
J. J.
,
Wang
,
Q.
, and
Zeng
,
M.
,
2020
, “
Development and Characteristics Analysis of Salt-Hydrate Based Composite Sorbent for Low-Grade Thermochemical Energy Storage
,”
Renewable Energy
,
157
, pp.
920
940
.
28.
Hongois
,
S.
,
Kuznik
,
F.
,
Stevens
,
P.
, and
Roux
,
J. J.
,
2011
, “
Development and Characterisation of a New MgSO4-Zeolite Composite for Long-Term Thermal Energy Storage
,”
Sol. Energy Mater. Sol. Cells
,
95
(
7
), pp.
1831
1837
.
29.
Whiting
,
G.
,
Grondin
,
D.
,
Bennici
,
S.
, and
Auroux
,
A.
,
2013
, “
Heats of Water Sorption Studies on Zeolite-MgSO4 Composites As Potential Thermochemical Heat Storage Materials
,”
Sol. Energy Mater. Sol. Cells
,
112
, pp.
112
119
.
30.
Jänchen
,
J.
,
Ackermann
,
D.
,
Stach
,
H.
, and
Brösicke
,
W.
,
2004
, “
Studies of the Water Adsorption on Zeolites and Modified Mesoporous Materials for Seasonal Storage of Solar Heat
,”
Sol. Energy
,
76
(
1–3
), pp.
339
344
.
31.
Wang
,
Q.
,
Xie
,
Y.
,
Ding
,
B.
,
Yu
,
G.
,
Ye
,
F.
, and
Xu
,
C.
,
2019
, “
Structure and Hydration State Characterizations of MgSO4-Zeolite 13x Composite Materials for Long-Term Thermochemical Heat Storage
,”
Sol. Energy Mater. Sol. Cells
,
200
(
2
), p.
110047
.
32.
Zhu
,
D.
,
Wu
,
H.
, and
Wang
,
S.
,
2006
, “
Experimental Study on Composite Silica Gel Supported CaCl2 Sorbent for Low Grade Heat Storage
,”
Int. J. Therm. Sci.
,
45
(
8
), pp.
804
813
.
33.
Brancato
,
V.
,
Calabrese
,
L.
,
Palomba
,
V.
,
Frazzica
,
A.
,
Fullana-Puig
,
M.
,
Solé
,
A.
, and
Cabeza
,
L. F.
,
2018
, “
MgSO4 · 7H2O Filled Macro Cellular Foams: An Innovative Composite Sorbent for Thermo-Chemical Energy Storage Applications for Solar Buildings
,”
Sol. Energy
,
173
(
2
), pp.
1278
1286
.
34.
Jänchen
,
J.
,
Ackermann
,
D.
,
Weiler
,
E.
,
Stach
,
H.
, and
Brösicke
,
W.
,
2005
, “
Calorimetric Investigation on Zeolites, AlPO4’s and CaCl2 Impregnated Attapulgite for Thermochemical Storage of Heat
,”
Thermochim. Acta
,
434
(
1–2
), pp.
37
41
.
35.
Fujioka
,
K.
,
Hatanaka
,
K.
, and
Hirata
,
Y.
,
2008
, “
Composite Reactants of Calcium Chloride Combined With Functional Carbon Materials for Chemical Heat Pumps
,”
Appl. Therm. Eng.
,
28
(
4
), pp.
304
310
.
36.
Scapino
,
L.
,
Zondag
,
H. A.
,
Van Bael
,
J.
,
Diriken
,
J.
, and
Rindt
,
C. C. M.
,
2017
, “
Sorption Heat Storage for Long-Term Low-Temperature Applications: A Review on the Advancements at Material and Prototype Scale
,”
Appl. Energy
,
190
, pp.
920
948
.
37.
Kubota
,
M.
,
Matsumoto
,
S.
, and
Matsuda
,
H.
,
2019
, “
Enhancement of Hydration Rate of LiOH by Combining With Mesoporous Carbon for Low-Temperature Chemical Heat Storage
,”
Appl. Therm. Eng.
,
150
(
12
), pp.
858
863
.
38.
Wu
,
H.
,
Wang
,
S.
, and
Zhu
,
D.
,
2007
, “
Effects of Impregnating Variables on Dynamic Sorption Characteristics and Storage Properties of Composite Sorbent for Solar Heat Storage
,”
Sol. Energy
,
81
(
7
), pp.
864
871
.
39.
Daou
,
K.
,
Wang
,
R. Z.
, and
Xia
,
Z. Z.
,
2006
, “
Development of a New Synthesized Adsorbent for Refrigeration and Air Conditioning Applications
,”
Appl. Therm. Eng.
,
26
(
1
), pp.
56
65
.
40.
Zhou
,
H.
, and
Zhang
,
D.
,
2019
, “
Effect of Graphene Oxide Aerogel on Dehydration Temperature of Graphene Oxide Aerogel Stabilized MgCl2⋅6H2O Composites
,”
Sol. Energy
,
184
(
3
), pp.
202
208
.
41.
Yang
,
X.
,
Li
,
S.
,
Huang
,
H.
,
Li
,
J.
,
Kobayashi
,
N.
, and
Kubota
,
M.
,
2017
, “
Effect of Carbon Nanoadditives on Lithium Hydroxide Monohydrate-Based Composite Materials for Low Temperature Chemical Heat Storage
,”
Energies
,
10
(
5
), p.
644
.
42.
Moon
,
R. J.
,
Martini
,
A.
,
Nairn
,
J.
,
Simonsen
,
J.
, and
Youngblood
,
J.
,
2011
, “
Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites
,”
Chem. Soc. Rev.
,
40
(
7
), pp.
3941
3994
.
43.
Sharma
,
A.
,
Tyagi
,
V. V.
,
Chen
,
C. R.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
318
345
.
44.
Sharma
,
S. D.
,
Kitano
,
H.
, and
Sagara
,
K.
,
2004
, “
Phase Change Materials for Low Temperature Solar Thermal Applications
,”
Res. Rep. Fac. Eng. Mie Univ
,
29
, pp.
31
64
, https://www.eng.mie-u.ac.jp/research/activities/29/29_31.pdf
You do not currently have access to this content.