Abstract

Thermal model is developed to predict the outlet water temperature with respect to time for water-in-tube type evacuated solar collector connected in series. Developed mathematical expression is validated for the single collector and two collectors connected in series. In each collector, there are 20 evacuated tubes connected to the storage tank. Coefficient of determination (R2), reduced chi-square (χ2), and root mean squared error (RMSE) have been calculated to show the prediction accuracy of the developed model. For single and two collectors connected in series, R2 is 99.73% and 99.90%, χ2 is 0.46 °C and 0.39 °C, and RMSE is 0.70 °C and 0.65 °C, respectively. Predicted value shows good agreement with the experimental value. At a constant mass flowrate, the maximum outlet temperature reaches 53.10 °C and 71.50 °C for single and two collectors in series, respectively. The maximum energy for the single collector is 4.12 kW and 4 kW, while for two collectors connected in series, the maximum energy is 7.08 kW and 6.69 kW. Average thermal efficiency is 4.45% and 4.51% and average exergy efficiency is 9.66% and 15.17% for single and series-connected collectors, respectively. Developed model can design energy-efficient “water-in-tube type evacuated tube collector” for domestic and industrial applications.

References

1.
Bhowmik
,
M.
,
Muthukumar
,
P.
, and
Anandalakshmi
,
R.
,
2019
, “
Experimental Based Multilayer Perceptron Approach for Prediction of Evacuated Solar Collector Performance in Humid Subtropical Regions
,”
Renew. Energy
,
143
, pp.
1566
1580
.
2.
Lopez-Nuñez
,
O. A.
,
Arturo Alfaro-Ayala
,
J.
,
Ramırez-Minguela
,
J. J.
,
Nicolas Flores-Balderas
,
J.
, and
Belman-Flores
,
J. M.
,
2019
, “
Solar Radiation Model Applied to a Low Temperature Evacuated Tubes Solar Collector
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031003
.
3.
Den Braven
,
K. R.
,
1989
, “
Two-Phase Heat Transfer in Thermosyphon Evacuated-Tube Solar Collectors
,”
ASME J. Sol. Energy Eng.
,
111
(
4
), pp.
292
297
.
4.
Kuang
,
R.
,
Song
,
Y.
,
Li
,
Z.
, and
Gu
,
Q.
,
2018
, “
The Mechanical Analysis of an All-Glass Solar Evacuated Tube With Spiral Inner Tube for Seawater Desalination
,”
ASME J. Sol. Energy Eng.
,
140
(
3
), p.
031008
.
5.
Garciá-Rincón
,
M. A.
,
Flores-Prieto
,
J. J.
, and
Montoya-Márquez
,
O.
,
2022
, “
Thermal Performance of a Low and Medium Temperature Flat Plate Solar Collector When Controlling the Output−Input Temperature Difference and the Tilt Angle
,”
ASME J. Sol. Energy Eng.
,
144
(
2
), p.
021008
.
6.
Kumar
,
L.
,
Hasanuzzaman
,
M.
, and
Rahim
,
N. A.
,
2019
, “
Global Advancement of Solar Thermal Energy Technologies for Industrial Process Heat and Its Future Prospects: A Review
,”
Energy Convers. Manage.
,
195
, pp.
885
908
.
7.
Naik
,
B. K.
,
Bhowmik
,
M.
, and
Muthukumar
,
P.
,
2019
, “
Experimental Investigation and Numerical Modelling on the Performance Assessments of Evacuated U-Tube Solar Collector Systems
,”
Renew. Energy
,
134
, pp.
1344
1361
.
8.
Mao
,
C.
,
Li
,
M.
,
Li
,
N.
,
Shan
,
M.
, and
Yang
,
X.
,
2019
, “
Mathematical Model Development and Optimal Design of the Horizontal All-Glass Evacuated Tube Solar Collectors Integrated With Bottom Mirror Reflectors for Solar Energy Harvesting
,”
Appl. Energy
,
238
, pp.
54
68
.
9.
Elsheniti
,
M. B.
,
Kotb
,
A.
, and
Elsamni
,
O.
,
2019
, “
Thermal Performance of a Heat-Pipe Evacuated-Tube Solar Collector at High Inlet Temperatures
,”
Appl. Therm. Eng.
,
154
, pp.
315
325
.
10.
Kotb
,
A.
,
Elsheniti
,
M. B.
, and
Elsamni
,
O. A.
,
2019
, “
Optimum Number and Arrangement of Evacuated-Tube Solar Collectors Under Various Operating Conditions
,”
Energy Convers. Manage.
,
199
, p.
112032
.
11.
Shah
,
L. J.
, and
Furbo
,
S.
,
2007
, “
Theoretical Flow Investigations of an All Glass Evacuated Tubular Collector
,”
Sol. Energy
,
81
(
6
), pp.
822
828
.
12.
Budihardjo
,
I.
,
Morrison
,
G. L.
, and
Behnia
,
M.
,
2007
, “
Natural Circulation Flow Through Water-in-Glass Evacuated Tube Solar Collectors
,”
Sol. Energy
,
81
(
12
), pp.
1460
1472
.
13.
Alfaro-Ayala
,
J. A.
,
Martínez-Rodríguez
,
G.
,
Picón-Núñez
,
M.
,
Uribe-Ramírez
,
A. R.
, and
Gallegos-Muñoz
,
A.
,
2015
, “
Numerical Study of a Low Temperature Water-in-Glass Evacuated Tube Solar Collector
,”
Energy Convers. Manage.
,
94
, pp.
472
481
.
14.
Mishra
,
R. K.
,
Garg
,
V.
, and
Tiwari
,
G. N.
,
2015
, “
Thermal Modeling and Development of Characteristic Equations of Evacuated Tubular Collector (ETC)
,”
Sol. Energy
,
116
, pp.
165
176
.
15.
Daghigh
,
R.
, and
Shafieian
,
A.
,
2016
, “
Theoretical and Experimental Analysis of Thermal Performance of a Solar Water Heating System With Evacuated Tube Heat Pipe Collector
,”
Appl. Therm. Eng.
,
103
, pp.
1219
1227
.
16.
Siva Kumar
,
S.
,
Kumar
,
K. M.
, and
Kumar
,
S. R. S.
,
2017
, “
Design of Evacuated Tube Solar Collector With Heat Pipe
,”
Mater. Today Proc.
,
4
(
14
), pp.
12641
12646
.
17.
Ma
,
L.
,
Lu
,
Z.
,
Zhang
,
J.
, and
Liang
,
R.
,
2010
, “
Thermal Performance Analysis of the Glass Evacuated Tube Solar Collector With U-Tube
,”
Build. Environ.
,
45
(
9
), pp.
1959
1967
.
18.
Gao
,
Y.
,
Zhang
,
Q.
,
Fan
,
R.
,
Lin
,
X.
, and
Yu
,
Y.
,
2013
, “
Effects of Thermal Mass and Flow Rate on Forced-Circulation Solar Hot-Water System: Comparison of Water-in-Glass and U-Pipe Evacuated-Tube Solar Collectors
,”
Sol. Energy
,
98
, pp.
290
301
.
19.
Soopee
,
A.
,
Khoodaruth
,
A. A. H.
,
Murdan
,
A. P.
, and
Oree
,
V.
,
2018
, “
Numerical Investigation of Thermal Separators Within the Evacuated Tubes of a Water-in-Glass Solar Water Heater
,”
ASME J. Sol. Energy Eng.
,
140
(
6
), p.
061014
.
20.
Farjallah
,
R.
,
Chaabane
,
M.
,
Mhiri
,
H.
,
Bournot
,
P.
, and
Dhaouadi
,
H.
,
2016
, “
Thermal Performance of the U-Tube Solar Collector Using Computational Fluid Dynamics Simulation
,”
ASME J. Sol. Energy Eng.
,
138
(
6
), p.
061008
.
21.
Sahota
,
L.
,
Shyam
, and
Tiwari
,
G. N.
,
2017
, “
Energy Matrices, Enviroeconomic and Exergoeconomic Analysis of Passive Double Slope Solar Still With Water Based Nanofluids
,”
Desalination
,
409
, pp.
66
79
.
22.
Koffi
,
P. M. E.
,
Andoh
,
H. Y.
,
Gbaha
,
P.
,
Touré
,
S.
, and
Ado
,
G.
,
2008
, “
Theoretical and Experimental Study of Solar Water Heater With Internal Exchanger Using Thermosiphon System
,”
Energy Convers. Manage.
,
49
(
8
), pp.
2279
2290
.
23.
Singh
,
R. V.
,
Kumar
,
S.
,
Hasan
,
M. M.
,
Khan
,
M. E.
, and
Tiwari
,
G. N.
,
2013
, “
Performance of a Solar Still Integrated With Evacuated Tube Collector in Natural Mode
,”
Desalination
,
318
, pp.
25
33
.
24.
Sodha
,
M. S.
, and
Tiwari
,
G. N.
,
1981
, “
Analysis of Natural Circulation Solar Water Heating Systems
,”
Energy Convers. Manage.
,
21
(
4
), pp.
283
288
.
25.
Tiwari
,
G. N.
,
2002
,
Solar Energy: Fundamentals, Designs, Modeling and Applications
,
Narosa Publication
,
New Delhi
.
26.
Mishra
,
R. K.
,
Garg
,
V.
, and
Tiwari
,
G. N.
,
2017
, “
Energy Matrices of U-Shaped Evacuated Tubular Collector (ETC) Integrated With Compound Parabolic Concentrator (CPC)
,”
Sol. Energy
,
153
, pp.
531
539
.
27.
Rahbar
,
N.
,
Asadi
,
A.
, and
Fotouhi-Bafghi
,
E.
,
2018
, “
Performance Evaluation of Two Solar Stills of Different Geometries: Tubular Versus Triangular: Experimental Study, Numerical Simulation, and Second Law Analysis
,”
Desalination
,
443
, pp.
44
55
.
28.
Nazari
,
S.
,
Safarzadeh
,
H.
, and
Bahiraei
,
M.
,
2019
, “
Performance Improvement of a Single Slope Solar Still by Employing Thermoelectric Cooling Channel and Copper Oxide Nanofluid: An Experimental Study
,”
J. Clean. Prod.
,
208
, pp.
1041
1052
.
29.
Hassanien
,
R. H. E.
,
Li
,
M.
, and
Tang
,
Y.
,
2018
, “
The Evacuated Tube Solar Collector Assisted Heat Pump for Heating Greenhouses
,”
Energy Build.
,
169
, pp.
305
318
.
30.
Jowzi
,
M.
,
Veysi
,
F.
, and
Sadeghi
,
G.
,
2019
, “
Experimental and Numerical Investigations on the Thermal Performance of a Modified Evacuated Tube Solar Collector: Effect of the Bypass Tube
,”
Sol. Energy
,
183
, pp.
725
737
.
31.
Roshani
,
G. H.
,
Feghhi
,
S. A. H.
,
Shama
,
F.
,
Salehizadeh
,
A.
, and
Nazemi
,
E.
,
2014
, “
Prediction of Materials Density According to Number of Scattered Gamma Photons Using Optimum Artificial Neural Network
,”
J. Comput. Methods Phys.
,
2014
, pp.
1
6
.
32.
Eftekhari Zadeh
,
E.
,
Feghhi
,
S. A. H.
,
Roshani
,
G. H.
, and
Rezaei
,
A.
,
2016
, “
Application of Artificial Neural Network in Precise Prediction of Cement Elements Percentages Based on the Neutron Activation Analysis
,”
Eur. Phys. J. Plus
,
131
(
5
), pp.
1
8
.
You do not currently have access to this content.