Abstract

The objective of this work is to develop empirical correlations describing diffuse fraction (DF) as a function of (1) sunshine fraction (SF), (2) clearness index (CI), and (3) both SF and CI. Four years instantaneously measured data were changed to monthly data at five locations belonging to five different climatic regions in Pakistan which were used as training dataset and nine correlations for each location (a total of 45) were formulated and their performance was assessed. Moreover, nine general empirical models were developed using the entire dataset (11 years) for five locations which were termed as generalized correlations (GCs). These GCs were validated by applying them to five other locations and comparing the generated results with measured results for those locations (validation dataset). The best model among GCs was found as GC8 which was then applied to compute DF for five more locations for which short-term (8 months) measured data were also available and thus a reasonable comparison could be made. Results showed that (1) new models were better than literature models, (2) GCs correlations were found in good agreement, and (3) second-degree multi-variate polynomial models are the best performance models with minimum errors, e.g., mean absolute biased error (MABE), mean absolute percentage error (MAPE), root-mean-square error (RMSE), sum of square of relative error (SSRE), and relative standard error (RSE) for GC8 were estimated as 0.018, 6.397, 0.021, 0.006, and 0.022, respectively (all values for Karachi).

References

1.
Sumair
,
M.
,
Aized
,
T.
,
Gardezi
,
S. A. R.
,
Bhutta
,
M. M. A.
,
Rehman
,
S. M. S.
, and
Rehman
,
S. U. u.
,
2021
, “
Application of Five Continuous Distributions and Evaluation of Wind Potential at Five Stations Using Normal Distribution
,”
Energy Explor. Exploit.
,
39
(
6
), pp.
2214
2239
.
2.
Sumair
,
M.
,
Aized
,
T.
,
Gardezi
,
S. A. R.
,
Bhutta
,
M. M. A.
,
Rehman
,
S. M. S.
, and
ur Rehman
,
S. U.
,
2021
, “
Comparison of Three Probability Distributions and Techno-Economic Analysis of Wind Energy Production Along the Coastal Belt of Pakistan
,”
Energy Explor. Exploit.
,
39
(
6
), pp.
2191
2213
.
3.
Sumair
,
M.
,
Aized
,
T.
,
Aslam Bhutta
,
M. M.
,
Siddiqui
,
F. A.
,
Tehreem
,
L.
, and
Chaudhry
,
A.
,
2022
, “
Method of Four Moments Mixture—A New Approach for Parametric Estimation of Weibull Probability Distribution for Wind Potential Estimation Applications
,”
Renew. Energy
,
191
(
3
), pp.
291
304
.
4.
Sumair
,
M.
,
Aized
,
T.
,
Gardezi
,
S. A. R.
,
Rehman
,
S. U. u.
, and
Rehman
,
S. M. S.
,
2020
, “
A Novel Method Developed to Estimate Weibull Parameters
,”
Energy Rep.
,
6
(
6
), pp.
1715
1733
.
5.
Sumair
,
M.
,
Aized
,
T.
,
Gardezi
,
S. A. R.
,
Ur Rehman
,
S. U.
, and
Rehman
,
S. M. S.
,
2021
, “
Wind Potential Estimation and Proposed Energy Production in Southern Punjab Using Weibull Probability Density Function and Surface Measured Data
,”
Energy Explor. Exploit.
,
39
(
6
), pp.
2150
2168
.
6.
Sumair
,
M.
,
Aized
,
T.
,
Gardezi
,
S. A. R.
, and
Waqas Aslam
,
M.
,
2021
, “
Efficiency Comparison of Historical and Newly Developed Weibull Parameters Estimation Methods
,”
Energy Explor. Exploit.
,
39
(
6
), pp.
2257
2278
.
7.
Sumair
,
M.
,
Aized
,
T.
,
Gardezi
,
S. A. R.
,
Rehman
,
S. M. S.
, and
Ur Rehman
,
S. U.
,
2021
, “
Investigation of Wind Shear Coefficients and Their Effect on Annual Energy Yields Along the Coastal Sites of Pakistan
,”
Energy Explor. Exploit.
,
39
(
6
), pp.
2169
2190
.
8.
Bakirci
,
K.
,
2015
, “
Models for the Estimation of Diffuse Solar Radiation for Typical Cities in Turkey
,”
Energy
,
82
, pp.
827
838
.
9.
Jamil
,
B.
,
Siddiqui
,
A. T.
, and
Akhtar
,
N.
,
2016
, “
Estimation of Solar Radiation and Optimum Tilt Angles for South-Facing Surfaces in Humid Subtropical Climatic Region of India
,”
Eng. Sci. Technol.
,
19
(
4
), pp.
1826
1835
.
10.
Carneiro
,
T. C.
,
de Carvalho
,
P. C. M.
,
Alves dos Santos
,
H.
,
Lima
,
M. A. F. B.
, and
Braga
,
A. P. d. S.
,
2022
, “
Review on Photovoltaic Power and Solar Resource Forecasting: Current Status and Trends
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
010801
.
11.
Bakirci
,
K.
,
2009
, “
Correlations for Estimation of Daily Global Solar Radiation With Hours of Bright Sunshine in Turkey
,”
Energy
,
34
(
4
), pp.
485
501
.
12.
Li
,
D. H. W.
,
Lou
,
S. W.
, and
Lam
,
J. C.
,
2015
, “
An Analysis of Global, Direct and Diffuse Solar Radiation
,”
Energy Procedia
,
75
, pp.
388
393
.
13.
Lave
,
M.
,
Stein
,
J.
, and
Smith
,
R.
,
2016
, “
Solar Variability Datalogger
,”
ASME J. Sol. Energy Eng.
,
138
(
5
), p.
054503
.
14.
Manoel dos Santos
,
C.
,
Escobedo
,
J. F.
,
de Souza
,
A.
,
Ihaddadene
,
R.
,
Gomes
,
E. N.
, and
da Silva
,
M. B. P.
,
2021
, “
Comparative Study of 16 Clear-Sky Radiative Transfer Models to Estimate Direct Normal Irradiance (DNI) in Botucatu, Brazil
,”
ASME J. Sol. Energy Eng.
,
143
(
3
), p.
030801
.
15.
Kheddioui
,
A.
,
El Ouiqary
,
E. M.
, and
Smiej
,
M.
,
2021
, “
Estimation of the Global Horizontal Solar Irradiation GHI for the Moroccan National Territory From Meteorological Satellite Images of the Second Generation Meteosat Series MSG
,”
Eur. J. Mol. Clin. Med.
,
8
(
3
), pp.
2814
2826
.
16.
Jamil
,
B.
, and
Akhtar
,
N.
,
2017
, “
Estimation of Diffuse Solar Radiation in Humid-Subtropical Climatic Region of India: Comparison of Diffuse Fraction and Diffusion Coefficient Models
,”
Energy
,
131
, pp.
149
164
.
17.
Gopinathan
,
K. K.
, and
Soler
,
A.
,
1995
, “
Diffuse Radiation Models and Monthly-Average, Daily, Diffuse Data for a Wide Latitude Range
,”
Energy
,
20
(
7
), pp.
657
667
.
18.
Rehman
,
S.
, and
Mohandes
,
M.
,
2008
, “
Artificial Neural Network Estimation of Global Solar Radiation Using Air Temperature and Relative Humidity
,”
Energy Policy
,
36
(
2
), pp.
571
576
.
19.
Bakirci
,
K.
,
2009
, “
Models of Solar Radiation With Hours of Bright Sunshine: A Review
,”
Renew. Sustain. Energy Rev.
,
13
(
9
), pp.
2580
2588
.
20.
Elminir
,
H. K.
,
Azzam
,
Y. A.
, and
Younes
,
F. I.
,
2007
, “
Prediction of Hourly and Daily Diffuse Fraction Using Neural Network, as Compared to Linear Regression Models
,”
Energy
,
32
(
8
), pp.
1513
1523
.
21.
Taşdemiroğlu
,
E.
, and
Sever
,
R.
,
1991
, “
Estimation of Monthly Average, Daily, Horizontal Diffuse Radiation in Turkey
,”
Energy
,
16
(
4
), pp.
787
790
.
22.
Li
,
H.
,
Bu
,
X.
,
Long
,
Z.
,
Zhao
,
L.
, and
Ma
,
W.
,
2012
, “
Calculating the Diffuse Solar Radiation in Regions Without Solar Radiation Measurements
,”
Energy
,
44
(
1
), pp.
611
615
.
23.
El-Sebaii
,
A. A.
, and
Trabea
,
A. A.
,
2003
, “
Estimation of Horizontal Diffuse Solar Radiation in Egypt
,”
Energy Convers. Manage.
,
44
(
15
), pp.
2471
2482
.
24.
Naser
,
A. D.
,
2010
, “
An Estimation of the Monthly Average Daily Diffuse Solar Radiation on Horizontal Surfaces Over Libya
,”
Energy Sources A: Recov. Util. Environ. Eff.
,
33
(
4
), pp.
317
326
.
25.
Collares-Pereira
,
M.
, and
Rabl
,
A.
,
1979
, “
The Average Distribution of Solar Radiation-Correlations Between Diffuse and Hemispherical and Between Daily and Hourly Insolation Values
,”
Sol. Energy
,
22
(
2
), pp.
155
164
.
26.
Sabzpooshani
,
M.
, and
Mohammadi
,
K.
,
2014
, “
Establishing New Empirical Models for Predicting Monthly Mean Horizontal Diffuse Solar Radiation in City of Isfahan, Iran
,”
Energy
,
69
, pp.
571
577
.
27.
Khorasanizadeh
,
H.
,
Mohammadi
,
K.
, and
Goudarzi
,
N.
,
2016
, “
Prediction of Horizontal Diffuse Solar Radiation Using Clearness Index Based Empirical Models: A Case Study
,”
Int. J. Hydrogen Energy
,
41
(
47
), pp.
21888
21898
.
28.
Tarhan
,
S.
, and
Sarı
,
A.
,
2005
, “
Model Selection for Global and Diffuse Radiation Over the Central Black Sea (CBS) Region of Turkey
,”
Energy Convers. Manage.
,
46
(
4
), pp.
605
613
.
29.
Aras
,
H.
,
Balli
,
O.
, and
Hepbasli
,
A.
,
2006
, “
Estimating the Horizontal Diffuse Solar Radiation Over the Central Anatolia Region of Turkey
,”
Energy Convers. Manage.
,
47
(
15
), pp.
2240
2249
.
30.
Jamil
,
B.
, and
Siddiqui
,
A. T.
,
2017
, “
Generalized Models for Estimation of Diffuse Solar Radiation Based on Clearness Index and Sunshine Duration in India: Applicability Under Different Climatic Zones
,”
J. Atmos. Sol. Terr. Phys.
,
157–158
, pp.
16
34
.
31.
Pandey
,
C. K.
, and
Katiyar
,
A. K.
,
2009
, “
A Comparative Study to Estimate Daily Diffuse Solar Radiation Over India
,”
Energy
,
34
(
11
), pp.
1792
1796
.
32.
Iqbal
,
M.
,
1979
, “
Correlation of Average Diffuse and Beam Radiation With Hours of Bright Sunshine
,”
Sol. Energy
,
23
(
2
), pp.
169
173
.
33.
Erbs
,
D. G.
,
Klein
,
S. A.
, and
Duffie
,
J. A.
,
1982
, “
Estimation of the Diffuse Radiation Fraction for Hourly, Daily and Monthly-Average Global Radiation
,”
Sol. Energy
,
28
(
4
), pp.
293
302
.
34.
Liu
,
B.
, and
Jordan
,
R.
,
1960
, “
The Interrelationship and of Direct, Diffuse and Characteristic Distribution Total Solar Radiation
,”
Sol. Energy
,
4
(
3
), pp.
1
19
.
35.
Lopes
,
S. M. A.
,
Cari
,
E. P. T.
, and
Hajimirza
,
S.
,
2022
, “
A Comparative Analysis of Artificial Neural Networks for Photovoltaic Power Forecast Using Remotes and Local Measurements
,”
ASME J. Sol. Energy Eng.
,
144
(
2
), p.
021007
.
36.
Lima
,
M. A. F. B.
,
Fernández Ramírez
,
L. M.
,
Carvalho
,
P. C. M.
,
Batista
,
J. G.
, and
Freitas
,
D. M.
,
2022
, “
A Comparison Between Deep Learning and Support Vector Regression Techniques Applied to Solar Forecast in Spain
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
010802
.
37.
Silva
,
R. C. C.
,
de Menezes Júnior
,
J. M. P.
, and
de Araújo Júnior
,
J. M.
,
2021
, “
Optimization of NARX Neural Models Using Particle Swarm Optimization and Genetic Algorithms Applied to Identification of Photovoltaic Systems
,”
ASME J. Sol. Energy Eng.
,
143
(
5
), p.
051001
.
38.
Al-Hajj
,
R.
,
Assi
,
A.
, and
Fouad
,
M.
,
2021
, “
Short-Term Prediction of Global Solar Radiation Energy Using Weather Data and Machine Learning Ensembles: A Comparative Study
,”
ASME J. Sol. Energy Eng.
,
143
(
5
), p.
051003
.
39.
Guermoui
,
M.
,
Gairaa
,
K.
,
Boland
,
J.
, and
Arrif
,
T.
,
2021
, “
A Novel Hybrid Model for Solar Radiation Forecasting Using Support Vector Machine and Bee Colony Optimization Algorithm: Review and Case Study
,”
ASME J. Sol. Energy Eng.
,
143
(
2
), p.
020801
.
40.
Li
,
P.
,
Bessafi
,
M.
,
Morel
,
B.
,
Chabriat
,
J.-P.
,
Delsaut
,
M.
, and
Li
,
Q.
,
2021
, “
Daily Surface Solar Radiation Prediction Mapping Using Artificial Neural Network: The Case Study of Reunion Island
,”
ASME J. Sol. Energy Eng.
,
143
(
2
), p.
021009
.
41.
Olatomiwa
,
L.
,
Mekhilef
,
S.
,
Shamshirband
,
S.
, and
Petković
,
D.
,
2015
, “
Adaptive Neuro-Fuzzy Approach for Solar Radiation Prediction in Nigeria
,”
Renew. Sustain. Energy Rev.
,
51
, pp.
1784
1791
.
42.
Park
,
J.-K.
,
Das
,
A.
, and
Park
,
J.-H.
,
2015
, “
A New Approach to Estimate the Spatial Distribution of Solar Radiation Using Topographic Factor and Sunshine Duration in South Korea
,”
Energy Convers. Manage.
,
101
, pp.
30
39
.
43.
Amrouche
,
B.
, and
Le Pivert
,
X.
,
2014
, “
Artificial Neural Network Based Daily Local Forecasting for Global Solar Radiation
,”
Appl. Energy
,
130
, pp.
333
341
.
44.
Linares-Rodríguez
,
A.
,
Ruiz-Arias
,
J. A.
,
Pozo-Vázquez
,
D.
, and
Tovar-Pescador
,
J.
,
2011
, “
Generation of Synthetic Daily Global Solar Radiation Data Based on ERA-Interim Reanalysis and Artificial Neural Networks
,”
Energy
,
36
(
8
), pp.
5356
5365
.
45.
Antonanzas-Torres
,
F.
,
Cañizares
,
F.
, and
Perpiñán
,
O.
,
2013
, “
Comparative Assessment of Global Irradiation From a Satellite Estimate Model (CM SAF) and On-Ground Measurements (SIAR): A Spanish Case Study
,”
Renew. Sustain. Energy Rev.
,
21
(
3
), pp.
248
261
.
46.
Behrang
,
M. A.
,
Assareh
,
E.
,
Ghanbarzadeh
,
A.
, and
Noghrehabadi
,
A. R.
,
2010
, “
The Potential of Different Artificial Neural Network (ANN) Techniques in Daily Global Solar Radiation Modeling Based on Meteorological Data
,”
Sol. Energy
,
84
(
8
), pp.
1468
1480
.
47.
Berrizbeitia
,
S. E.
,
Jadraque Gago
,
E.
, and
Muneer
,
T.
,
2020
, “
Empirical Models for the Estimation of Solar Sky-Diffuse Radiation. A Review and Experimental Analysis
,”
Energies
,
13
(
3
), p.
701
.
48.
Ulgen
,
K.
, and
Hepbasli
,
A.
,
2009
, “
Diffuse Solar Radiation Estimation Models for Turkey’s Big Cities
,”
Energy Convers. Manage.
,
50
(
1
), pp.
149
156
.
49.
Barbaro
,
S.
,
Cannata
,
G.
,
Coppolino
,
S.
,
Leone
,
C.
, and
Sinagra
,
E.
,
1981
, “
Diffuse Solar Radiation Statistics for Italy
,”
Sol. Energy
,
26
(
5
), pp.
429
435
.
50.
Jiang
,
Y.
,
2009
, “
Estimation of Monthly Mean Daily Diffuse Radiation in China
,”
Appl. Energy
,
86
(
9
), pp.
1458
1464
.
51.
Li
,
H.
,
Ma
,
W.
,
Wang
,
X.
, and
Lian
,
Y.
,
2011
, “
Estimating Monthly Average Daily Diffuse Solar Radiation With Multiple Predictors: A Case Study
,”
Renew. Energy
,
36
(
7
), pp.
1944
1948
.
52.
Trabea
,
A. A.
,
1999
, “
Technical Note a Multiple Linear Correlation for Diffuse Radiation From Global Solar Radiation and Sunshine Data Over Egypt
,”
Renew. Energy
,
17
(
3
), pp.
411
420
.
53.
Rensheng
,
C.
,
Ersi
,
K.
,
Jianping
,
Y.
,
Shihua
,
L.
,
Wenzhi
,
Z.
, and
Yongjian
,
D.
,
2004
, “
Estimation of Horizontal Diffuse Solar Radiation With Measured Daily Data in China
,”
Renew. Energy
,
29
(
5
), pp.
717
726
.
54.
Khalil
,
A.
, and
Alnajjar
,
A.
,
1995
, “
Experimental and Theoretical Investigation of Global and Diffuse Solar Radiation in the United Arab Emirates
,”
Renew. Energy
,
6
(
5
), pp.
537
543
.
55.
Bortolini
,
M.
,
Gamberi
,
M.
,
Graziani
,
A.
,
Manzini
,
R.
, and
Mora
,
C.
,
2013
, “
Multi-Location Model for the Estimation of the Horizontal Daily Diffuse Fraction of Solar Radiation in Europe
,”
Energy Convers. Manage.
,
67
(
2
), pp.
208
216
.
56.
Tiris
,
M.
,
Tiris
,
Ç.
, and
Türe
,
İ. E.
,
1996
, “
Correlations of Monthly-Average Daily Global, Diffuse and Beam Radiations With Hours of Bright Sunshine in Gebze, Turkey
,”
Energy Convers. Manage.
,
37
(
9
), pp.
1417
1421
.
57.
Klein
,
S. A.
,
1977
, “
Calculation of Monthly Average Insolation on Tilted Surfaces
,”
Sol. Energy
,
19
(
4
), pp.
325
329
.
58.
Khahro
,
S. F.
,
Tabbassum
,
K.
,
Talpur
,
S.
,
Alvi
,
M. B.
,
Liao
,
X.
, and
Dong
,
L.
,
2015
, “
Evaluation of Solar Energy Resources by Establishing Empirical Models for Diffuse Solar Radiation on Tilted Surface and Analysis for Optimum Tilt Angle for a Prospective Location in Southern Region of Sindh, Pakistan
,”
Int. J. Electr. Power Energy Syst.
,
64
, pp.
1073
1080
.
59.
Khan
,
S.
,
2019
, “
Climate Classification of Pakistan
,”
Int. J. Econ. Environ. Geol.
,
10
(
2
), pp.
60
71
.
60.
Lewis
,
G.
,
1983
, “
Diffuse Irradiation Over Zimbabwe
,”
Sol. Energy
,
31
(
1
), pp.
125
128
.
You do not currently have access to this content.