Abstract

Despite the extensive body of research on PV/thermal systems, a gap remains in evaluating their performance in residential settings. This study aims to bridge this gap by focusing on the energy modeling of a PV/Thermal (PVT) hybrid panel that incorporates heat pipe technology. The evaluation is conducted through MATLAB code to assess the system's capability to fulfill the electricity and heating demands of residential buildings. The model's reliability is affirmed by comparing it with experimental data from a PVT panel tested in Sydney, exploring the transient variations in both water heat gain rates and power generation. The model's precision is evident from the percentage of error in the estimated temperatures of the PV panel based on the test results under various weather conditions, which ranged from −8% to 6%. This method was also utilized to determine the overall energy efficiency of the PVT under different climatic conditions. The results reveal that the overall energy efficiency of the proposed PVT panel, on a typical day, is approximately 45%, significantly outperforming traditional PV panels by more than double. Furthermore, the payback period for a typical residential PVT system, providing both hot water and electricity, is found substantially shorter than that of installing separate PV and solar hot water systems, highlighting the economic and environmental benefits of the proposed hybrid system.

This content is only available via PDF.
You do not currently have access to this content.