Abstract

This study delves into the realm of numerical investigation of the heat transfer performance of nanofluids as coolants for prismatic batteries. Nanofluids are being employed in battery cooling systems to enhance overall thermal management and ensure the safe operation of batteries, particularly in situations involving high heat generation. In this study, different types of nanofluids were used along with a base fluid of ethylene glycol–water (EG–water 50%). The energy equations consider the effects of viscous dissipation and heat generation. The model generates a set of nonlinear partial differential equations, which can be transformed into ordinary differential equations (ODEs) using appropriate similarity variables. These ODEs are then solved numerically by employing the Runge–Kutta–Fehlberg method along with the shooting method to obtain solutions. The simulations in both 2D and 3D showcase the results for various parameters pertaining to thermal and velocity fields, heat transfer rate, and drag force. The findings reveal that heat generation leads to a staggering increase in temperature of 78.22%. However, using aluminum nanoparticles (NPs) as opposed to copper nanoparticles quickly reduced the battery’s maximum temperature by 9.31%. The exceptional heat generation strengths of CuO–EG and Al2O3–EG nanofluids also resulted in a significant increase in their heat transfer rates of around 40.42% and 42.13%, respectively. Additionally, the aluminum NPs exhibited a more rapid heat transfer rate of 4.06% when compared to the copper nanoparticles. This research contributes to the development of improved cooling strategies for prismatic battery applications, ultimately paving the way for enhanced battery performance, an extended lifespan, and improved safety in a wide range of industries and electric vehicles.

References

1.
Giuliano
,
M. R.
,
Prasad
,
A. K.
, and
Advani
,
S. G.
,
2012
, “
Experimental Study of an Air-Cooled Thermal Management System for High Capacity Lithium-Titanate Batteries
,”
J. Power Sources
,
216
(
1
), pp.
345
352
.
2.
Thakur
,
A. K.
,
Ahmed
,
M. S.
,
Kang
,
H.
,
Prabakaran
,
R.
,
Said
,
Z.
,
Rahman
,
S.
,
Sathyamurthy
,
R.
,
Kim
,
J.
, and
Hwang
,
J. Y.
,
2022
, “
Critical Review on Internal and External Battery Thermal Management Systems for Fast Charging Applications
,”
Adv. Energy Mater.
,
2202944
(
11
), pp.
1
37
.
3.
Wu
,
W.
,
Wang
,
S.
,
Wu
,
W.
,
Chen
,
K.
,
Hong
,
S.
, and
Lai
,
Y.
,
2019
, “
A Critical Review of Battery Thermal Performance and Liquid Based Battery Thermal Management
,”
Energy Convers. Manage.
,
182
, pp.
262
281
.
4.
Zhao
,
G.
,
Wang
,
X.
,
Negnevitsky
,
M.
, and
Zhang
,
H.
,
2021
, “
A Review of Air-Cooling Battery Thermal Management Systems for Electric and Hybrid Electric Vehicles
,”
J. Power Sources
,
501
, p.
230001
.
5.
Akbarzadeh
,
M.
,
Jaguemont
,
J.
,
Kalogiannis
,
T.
,
Karimi
,
D.
,
He
,
J.
,
Jin
,
L.
,
Xie
,
P.
,
Van Mierlo
,
J.
, and
Berecibar
,
M.
,
2021
, “
A Novel Liquid Cooling Plate Concept for Thermal Management of Lithium-Ion Batteries in Electric Vehicles
,”
Energy Convers. Manage.
,
231
, p.
113862
.
6.
Can
,
A.
,
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2022
, “
A Review on Soft Computing and Nanofluid Applications for Battery Thermal Management
,”
J. Energy Storage
,
53
(
1
), p.
105214
.
7.
Jilte
,
R.
,
Afzal
,
A.
, and
Panchal
,
S.
,
2021
, “
A Novel Battery Thermal Management System Using Nano-Enhanced Phase Change Materials
,”
Energy
,
219
(
1
), p.
119564
.
8.
Liu
,
C.
,
Xu
,
D.
,
Weng
,
J.
,
Zhou
,
S.
,
Li
,
W.
, and
Wan
,
Y.
,
2020
, “Phase Change Materials Application in Battery[3].pdf.”.
9.
Siddique
,
A. R. M.
,
Mahmud
,
S.
, and
Heyst
,
B. V.
,
2018
, “
A Comprehensive Review on a Passive (Phase Change Materials) and an Active (Thermoelectric Cooler) Battery Thermal Management System and Their Limitations
,”
J. Power Sources
,
401
, pp.
224
237
.
10.
Ding
,
B.
,
Qi
,
Z. H.
,
Mao
,
C. S.
,
Gong
,
L.
, and
Liu
,
X. L.
,
2020
, “
Numerical Investigation on Cooling Performance of PCM/Cooling Plate Hybrid System for Power Battery With Variable Discharging Conditions
,”
J. Therm. Anal. Calorim.
,
141
(
1
), pp.
625
633
.
11.
Song
,
L.
,
Zhang
,
H.
, and
Yang
,
C.
,
2019
, “
Thermal Analysis of Conjugated Cooling Configurations Using Phase Change Material and Liquid Cooling Techniques for a Battery Module
,”
Int. J. Heat Mass Transf.
,
133
(
1
), pp.
827
841
.
12.
Huang
,
Y.
,
Mei
,
P.
,
Lu
,
Y.
,
Huang
,
R.
,
Yu
,
X.
,
Chen
,
Z.
, and
Roskilly
,
A. P.
,
2019
, “
A Novel Approach for Lithium-Ion Battery Thermal Management With Streamline Shape Mini Channel Cooling Plates
,”
Appl. Therm. Eng.
,
157
, p.
113623
.
13.
Akbarzadeh
,
M.
,
Kalogiannis
,
T.
,
Jaguemont
,
J.
,
Jin
,
L.
,
Behi
,
H.
,
Karimi
,
D.
,
Beheshti
,
H.
,
Van Mierlo
,
J.
, and
Berecibar
,
M.
,
2021
, “
A Comparative Study Between Air Cooling and Liquid Cooling Thermal Management Systems for a High-Energy Lithium-Ion Battery Module
,”
Appl. Therm. Eng.
,
198
, p.
117503
.
14.
Ling
,
Z.
,
Cao
,
J.
,
Zhang
,
W.
,
Zhang
,
Z.
,
Fang
,
X.
, and
Gao
,
X.
,
2018
, “
Compact Liquid Cooling Strategy With Phase Change Materials for Li-Ion Batteries Optimized Using Response Surface Methodology
,”
Appl. Energy
,
228
, pp.
777
788
.
15.
Huo
,
Y.
,
Rao
,
Z.
,
Liu
,
X.
, and
Zhao
,
J.
,
2015
, “
Investigation of Power Battery Thermal Management by Using Mini-Channel Cold Plate
,”
Energy Convers. Manage.
,
89
, pp.
387
395
.
16.
Park
,
H.
,
2013
, “
A Design of Air Flow Configuration for Cooling Lithium Ion Battery in Hybrid Electric Vehicles
,”
Journal of Power Sources
,
239
(
1
), pp.
30
36
.
17.
Yang
,
X.
,
Yan
,
Y. Y.
, and
Mullen
,
D.
,
2012
, “
Recent Developments of Lightweight, High Performance Heat Pipes
,”
Appl. Therm. Eng.
,
33–34
(
1
), pp.
1
14
.
18.
Wiriyasart
,
S.
,
Hommalee
,
C.
,
Sirikasemsuk
,
S.
,
Prurapark
,
R.
, and
Naphon
,
P.
,
2020
, “
Thermal Management System With Nanofluids for Electric Vehicle Battery Cooling Modules
,”
Case Stud. Therm. Eng.
,
18
, p.
100583
.
19.
Kshetrimayum
,
K. S.
,
Yoon
,
Y. G.
,
Gye
,
H. R.
, and
Lee
,
C. J.
,
2019
, “
Preventing Heat Propagation and Thermal Runaway in Electric Vehicle Battery Modules Using Integrated PCM and Micro-Channel Plate Cooling System
,”
Appl. Therm. Eng.
,
159
, p.
113797
.
20.
Cao
,
J.
,
He
,
Y.
,
Feng
,
J.
,
Lin
,
S.
,
Ling
,
Z.
,
Zhang
,
Z.
, and
Fang
,
X.
,
2020
, “
Mini-Channel Cold Plate With Nano Phase Change Material Emulsion for Li-Ion Battery Under High-Rate Discharge
,”
Appl. Energy
,
279
, p.
115808
.
21.
Jarrett
,
A.
, and
Kim
,
I. Y.
,
2011
, “
Design Optimization of Electric Vehicle Battery Cooling Plates for Thermal Performance
,”
J. Power Sources
,
196
(
23
), pp.
10359
10368
.
22.
Hasan
,
H. A.
,
Togun
,
H.
,
Abed
,
A. M.
,
Qasem
,
N. A. A.
,
Abderrahmane
,
A.
,
Guedri
,
K.
, and
Eldin
,
S. M.
,
2023
, “
Numerical Investigation on Cooling Cylindrical Lithium-Ion-Battery by Using Different Types of Nanofluids in an Innovative Cooling System
,”
Case Stud. Therm. Eng.
,
49
(
1
), p.
103097
.
23.
Thorat
,
P.
,
2023
, “
Experimental Investigation of Change in Performance Parameters on Cooling of Lithium-Ion Battery Pack Using Nanofluids
,”
Energy Storage
,
5
(
6
), p.
e451
.
24.
Ouyang
,
T.
,
Liu
,
B.
,
Wang
,
C.
,
Ye
,
J.
, and
Liu
,
S.
,
2023
, “
Novel Hybrid Thermal Management System for Preventing Li-Ion Battery Thermal Runaway Using Nanofluids Cooling
,”
Int. J. Heat Mass Transf.
,
201
(
Part 2
), p.
123652
.
25.
Guo
,
Z.
,
Wang
,
Y.
,
Zhao
,
S.
,
Zhao
,
T.
, and
Ni
,
M.
,
2023
, “
Investigation of Battery Thermal Management System With Considering Effect of Battery Aging and Nanofluids
,”
Int. J. Heat Mass Transf.
,
202
(
1
), p.
123685
.
26.
Selimefendigil
,
F.
,
Dilbaz
,
F.
, and
Öztop
,
H. F.
,
2023
, “
Combined Utilization of Cylinder and Different Shaped Alumina Nanoparticles in the Base Fluid for the Effective Cooling System Design of Lithium-Ion Battery Packs
,”
Energies
,
16
(
9
), p.
3966
.
27.
Wankhede
,
S.
, and
Kamble
,
L. V.
,
2023
, “
A Novel Battery Cooling System Using Nanofluids on MATLAB Simulink
,”
Energy Storage
,
5
(
3
), p.
e418
.
28.
Chavan
,
S.
,
Venkateswarlu
,
B.
,
Prabakaran
,
R.
,
Salman
,
M.
,
Joo
,
S. W.
,
Choi
,
G. S.
, and
Kim
,
S. C.
,
2023
, “
Thermal Runaway and Mitigation Strategies for Electric Vehicle Lithium-Ion Batteries Using Battery Cooling Approach: A Review of the Current Status and Challenges
,”
J. Energy Storage
,
72
(
Part D
).
29.
Yetik
,
O.
, and
Karakoc
,
T. H.
,
2022
, “
Thermal and Electrical Analysis of Batteries in Electric Aircraft Using Nanofluids
,”
J. Energy Storage
,
52
(
Part B
), p.
104853
.
30.
Rahmani
,
E.
,
Fattahi
,
A.
,
Panahi
,
E.
, and
Mahmoudi
,
Y.
,
2023
, “
Thermal Management Improvement for a Pack of Cylindrical Batteries Using Nanofluids and Topological Modifications
,”
J. Power Sources
,
564
, p.
232876
.
31.
Yang
,
L.
,
Zhou
,
F.
,
Sun
,
L.
, and
Wang
,
S.
,
2022
, “
Thermal Management of Lithium-Ion Batteries With Nanofluids and Nano-Phase Change Materials: A Review
,”
J. Power Sources
,
539
, p.
231605
.
32.
Smaisim
,
G. F.
,
Al-Madhhachi
,
H.
, and
Abed
,
A. M.
,
2022
, “
Study the Thermal Management of Li-Ion Batteries Using Looped Heat Pipes With Different Nanofluids
,”
Case Stud. Therm. Eng.
,
37
, p.
102227
.
33.
Sriharan
,
G.
,
Harikrishnan
,
S.
,
Muhammad Ali
,
H.
,
Kumar
,
H.
, and
Singh Sokhal
,
G.
,
2022
, “
Effect of Different Types of Nanoparticles on Thermophysical Properties of Water Based Hybrid Nanofluids
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
1248
(
1
), p.
012071
.
34.
Tete
,
P. R.
,
Gupta
,
M. M.
, and
Joshi
,
S. S.
,
2022
, “
Numerical Investigation on Thermal Characteristics of a Liquid-Cooled Lithium-Ion Battery Pack with Cylindrical Cell Casings and a Square Duct
,”
J. Energy Storage
,
48
, p.
104041
.
35.
Xu
,
X.
,
Xiao
,
T.
,
Chen
,
S.
, and
Lin
,
S.
,
2019
, “
Exploring the Heat Transfer Performance of Nanofluid as a Coolant for Power Battery Pack
,”
Heat Transf. Res.
,
48
(
7
), pp.
2974
2988
.
36.
Venkateswarlu
,
B.
, and
Satya Narayana
,
P. V.
,
2015
, “
Chemical Reaction and Radiation Absorption Effects on the Flow and Heat Transfer of a Nanofluid in a Rotating System
,”
Appl. Nanosci.
,
5
(
3
), pp.
351
360
.
37.
Satya Narayana
,
P. V.
,
Venkateswarlu
,
B.
, and
Venkataramana
,
S.
,
2015
, “
Thermal Radiation and Heat Source Effects on a MHD Nanofluid Past a Vertical Plate in a Rotating System With Porous Medium
,”
Heat Transf. Res.
,
44
(
1
), pp.
1
19
.
38.
Widyantara
,
R. D.
,
Naufal
,
M. A.
,
Sambegoro
,
P. L.
,
Nurprasetio
,
I. P.
,
Triawan
,
F.
,
Djamari
,
D. W.
,
Nandiyanto
,
A. B. D.
,
Budiman
,
B. A.
, and
Aziz
,
M.
,
2021
, “
Low-Cost Air-Cooling System Optimization on Battery Pack of Electric Vehicle
,”
Energies
,
14
(
23
), p.
7954
.
39.
Mokashi
,
I.
,
Afzal
,
A.
,
Khan
,
S. A.
,
Abdullah
,
N. A.
,
Bin Azami
,
M. H.
,
Jilte
,
R. D.
, and
Samuel
,
O. D.
,
2021
, “
Nusselt Number Analysis From a Battery Pack Cooled by Different Fluids and Multiple Back-Propagation Modelling Using Feed-Forward Networks
,”
Int. J. Therm. Sci.
,
161
, p.
106738
.
40.
Inui
,
Y.
,
Hirayama
,
S.
, and
Tanaka
,
T.
,
2019
, “
Detailed Estimation Method of Heat Generation During Charge/Discharge in Lithium-Ion Battery Using Equivalent Circuit
,”
Electron. Commun. Jpn.
,
102
(
12
), pp.
3
14
.
41.
Venkateswarlu
,
B.
, and
Satya Narayana
,
P. V.
,
2021
, “
Cu-Al2O3/H2O Hybrid Nanofluid Flow Past a Porous Stretching Sheet Due to Temperatue-Dependent Viscosity and Viscous Dissipation
,”
Heat Transf.
,
50
(
1
), pp.
432
449
.
42.
Kiani
,
M.
,
Omiddezyani
,
S.
,
Houshfar
,
E.
,
Miremadi
,
S. R.
,
Ashjaee
,
M.
, and
Mahdavi Nejad
,
A.
,
2020
, “
Lithium-Ion Battery Thermal Management System With Al2O3/AgO/CuO Nanofluids and Phase Change Material
,”
Appl. Therm. Eng.
,
180
, p.
115840
.
43.
Mondal
,
B.
,
Lopez
,
C. F.
, and
Mukherjee
,
P. P.
,
2017
, “
Exploring the Efficacy of Nanofluids for Lithium-Ion Battery Thermal Management
,”
Int. J. Heat Mass Transf.
,
112
, pp.
779
794
.
You do not currently have access to this content.