Abstract

The Ranque–Hilsch vortex tube is a device that splits an incoming flow into two outgoing streams, but with the peculiar property that one stream exits at a lower total temperature than the incoming flow and the other at a higher total temperature. This temperature separation is accomplished without any moving parts, electronics or external power supplied to the device. Despite the passage of nearly a century since discovery of the effect, there remains a dearth of understanding regarding the mechanism responsible for the phenomenon. In fact, the literature contains competing theories with little evidence providing support. A promising technique to discern the responsible mechanisms for the energy transfer from the ultimately cold stream to the ultimately hot stream is to define a stream tube in a computational simulation of the flow that propagates upstream from the exits such that the stream tube interface separates the hot flow from the cold flow. In this article, we apply this method to a three-dimensional, full-volume analysis of the flow within a vortex tube using a computational simulation that was thoroughly validated against experiments on a physical replica of the computational geometry. In this novel study, the integral form of the energy equation was used to quantify all forms of the energy transfer within the vortex tube. The results demonstrate that the phenomenon of temperature separation is attributable primarily to viscous work in the radial direction due to the circumferential flow, with a lesser contribution from heat transfer in the radial direction.

References

1.
Ranque
,
G. J.
,
1933
, “
Method and Apparatus Making it Possible to Obtain, From a Pressurized Fluid, Two Fluid Currents of Different Temperatures
,” French Patent No. 743,111.
2.
Ranque
,
G. J.
,
1934
, “Method and Apparatus for Obtaining from a Fluid under Pressure Two Outputs of Fluid at Different Temperatures,” U.S. Patent No. 1,952,281.
3.
Hilsch
,
R.
,
1947
, “
The Use of the Expansion of Gases in a Centrifugal Field as Cooling Process
,”
Rev. Sci. Instrum.
,
18
(
2
), pp.
108
113
.
4.
Vortec
, “Vortex Tube Short Course,” https://www.vortec.com/en-us/vortex-tube-short-course, Accessed July 5, 2024.
5.
Stephan
,
K.
,
Lin
,
S.
,
Durst
,
M.
,
Huang
,
F.
, and
Seher
,
D.
,
1983
, “
An Investigation of Energy Separation in a Vortex Tube
,”
Int. J. Heat Mass Transfer
,
26
(
3
), pp.
341
348
.
6.
Takahama
,
H.
,
1965
, “
Studies on Vortex Tubes
,”
Bull. JSME
,
8
(
31
), pp.
433
440
.
7.
Fulton
,
C. D.
,
1950
, “
Ranque’s Tube
,”
Refrig. Eng.
,
58
(
5
), pp.
473
479
.
8.
Rutledge
,
J.
,
Fuqua
,
M.
, and
Bryant
,
C.
,
2022
, “Turbine Cooling System With Energy Separation,” U.S. Patent No. 11,454,171 B1.
9.
Deissler
,
R. G.
, and
Perlmutter
,
M.
,
1960
, “
Analysis of the Flow and Energy Separation in a Turbulent Vortex
,”
Int. J. Heat Mass Transfer
,
1
(
2–3
), pp.
173
191
.
10.
Elser
,
V. K.
, and
Hoch
,
M.
,
1951
, “
Das Verhalten Verschiedener Gase Und Die Trennung von Gasgemischen in Einem Wirbelrohr
,”
Z. Naturforsch., A: Phys. Sci.
,
6
(
1
), pp.
25
31
.
11.
Sibulkin
,
M.
,
1962
, “
Unsteady, Viscous, Circular Flow Part 3. Application to the Ranque-Hilsch Vortex Tube
,”
J. Fluid Mech.
,
12
(
02
), p.
269
.
12.
Schultz-Grunow
,
F.
,
1951
, “
Turbulenter Wärmedurchgang Im Zentrifugalfeld
,”
Forsch. Geb. Ingenieurwes. A
,
17
(
3
), pp.
65
76
.
13.
Scheper
,
G. W.
,
1951
, “
The Vortex Tube-Internal Flow Data and a Heat Transfer Theory
,”
J. ASRE Refrig. Eng.
,
59
(
10
), pp.
985
989
.
14.
Scheller
,
W. A.
,
1957
, “
The Ranque-Hilsch Vortex Tube
,”
Fluid Mech. Chem. Eng.
,
49
(
6
), pp.
1013
1016
.
15.
Hartnett
,
J. P.
, and
Eckert
,
E. R. G.
,
1957
, “
Experimental Study of the Velocity and Temperature Distribution in a High Velocity Vortex Type Flow
,”
Trans. ASME
,
79
(
4
), pp.
751
758
.
16.
Van Deemter
,
J. J.
,
1952
, “
On the Theory of the Ranque-Hilsch Cooling Effect
,”
Appl. Sci. Res. Sect. A
,
3
(
3
), pp.
174
196
.
17.
Eckert
,
E. R. G.
,
1987
, “
Cross Transport of Energy in Fluid Streams
,”
Wärme Stoffübertrag.
,
21
(
2–3
), pp.
73
81
.
18.
Bruun
,
H. H.
,
1969
, “
Experimental Investigation of the Energy Separation in Vortex Tubes
,”
J. Mech. Eng. Sci.
,
11
(
6
), pp.
567
582
.
19.
Kurosaka
,
M.
,
1982
, “
Acoustic Streaming in Swirling Flow and the Ranque-Hilsch (Vortex-Tube) Effect
,”
J. Fluid Mech.
,
124
(
1
), pp.
139
172
.
20.
Ahlborn
,
B.
, and
Groves
,
S.
,
1997
, “
Secondary Flow in a Vortex Tube
,”
Fluid Dyn. Res.
,
21
(
2
), pp.
73
86
.
21.
Xue
,
Y.
,
Arjomandi
,
M.
, and
Kelso
,
R.
,
2013
, “
The Working Principle of a Vortex Tube
,”
Int. J. Refrig.
,
36
(
6
), pp.
1730
1740
.
22.
Polihronov
,
J. G.
, and
Straatman
,
A. G.
,
2012
, “
Thermodynamics of Angular Propulsion in Fluids
,”
Phys. Rev. Lett.
,
109
(
5
), pp.
1
4
.
23.
Kassner
,
R.
, and
Knoernschild
,
E.
,
1948
,
Friction Laws and Energy Transfer in Circular Flow
,
Air Materiel Command, Wright-Patterson Air Force Base
,
Dayton, OH
. https://apps.dtic.mil/sti/pdfs/ADA800229.pdf
24.
Martynovskii
,
V. S.
, and
Alekseev
,
V. P.
,
1957
, “
Investigation of the Vortex Thermal Separation Effect for Gases and Vapour
,”
Sov. Physics. Tech. Phys.
,
1
(
10
), pp.
2233
2243
.
25.
Fröhlingsdorf
,
W.
, and
Unger
,
H.
,
1998
, “
Numerical Investigations of the Compressible Flow and the Energy Separation in the Ranque-Hilsch Vortex Tube
,”
Int. J. Heat Mass Transfer
,
42
(
3
), pp.
415
422
.
26.
Skye
,
H. M.
,
Nellis
,
G. F.
, and
Klein
,
S. A.
,
2006
, “
Comparison of CFD Analysis to Empirical Data in a Commercial Vortex Tube
,”
Int. J. Refrig.
,
29
(
1
), pp.
71
80
.
27.
Behera
,
U.
,
Paul
,
P. J.
,
Kasthurirengan
,
S.
,
Karunanithi
,
R.
,
Ram
,
S. N.
,
Dinesh
,
K.
, and
Jacob
,
S.
,
2005
, “
CFD Analysis and Experimental Investigations Towards Optimizing the Parameters of Ranque-Hilsch Vortex Tube
,”
Int. J. Heat Mass Transfer
,
48
(
10
), pp.
1961
1973
.
28.
Oliver
,
R.
,
Boyle
,
F.
, and
Reynolds
,
A.
,
2006
, “
Computer Aided Study of the Ranque–Hilsch Vortex Tube Using Advanced Three-Dimensional Computational Fluid Dynamics Software
,”
Proceedings of the 6th WSEAS International Conference on Applied Computer Science
,
Tenerife, Canary Islands
,
Dec. 16–18
, pp.
478
483
.
29.
Farouk
,
T.
, and
Farouk
,
B.
,
2007
, “
Large Eddy Simulations of the Flow Field and Temperature Separation in the Ranque-Hilsch Vortex Tube
,”
Int. J. Heat Mass Transfer
,
50
(
23–24
), pp.
4724
4735
.
30.
Secchiaroli
,
A.
,
Ricci
,
R.
,
Montelpare
,
S.
, and
D’Alessandro
,
V.
,
2009
, “
Numerical Simulation of Turbulent Flow in a Ranque-Hilsch Vortex Tube
,”
Int. J. Heat Mass Transfer
,
52
(
23–24
), pp.
5496
5511
.
31.
Dutta
,
T.
,
Sinhamahapatra
,
K. P.
, and
Bandyopdhyay
,
S. S.
,
2010
, “
Comparison of Different Turbulence Models in Predicting the Temperature Separation in a Ranque-Hilsch Vortex Tube
,”
Int. J. Refrig.
,
33
(
4
), pp.
783
792
.
32.
Aljuwayhel
,
N. F.
,
Nellis
,
G. F.
, and
Klein
,
S. A.
,
2005
, “
Parametric and Internal Study of the Vortex Tube Using a CFD Model
,”
Int. J. Refrig.
,
28
(
3
), pp.
442
450
.
33.
Behera
,
U.
,
Paul
,
P. J.
,
Dinesh
,
K.
, and
Jacob
,
S.
,
2008
, “
Numerical Investigations on Flow Behaviour and Energy Separation in Ranque-Hilsch Vortex Tube
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6077
6089
.
34.
Balakumar
,
K. V. C.
, and
Disimile
,
P. J.
,
2021
, “
Analysis of Energy Separation Inside a Ranque-Hilsch Vortex Tube Using RANS Based CFD
,”
Results Eng.
,
11
, p.
100255
.
35.
Manimaran
,
R.
,
2016
, “
Computational Analysis of Energy Separation in a Counter-Flow Vortex Tube Based on Inlet Shape and Aspect Ratio
,”
Energy
,
107
, pp.
17
28
.
36.
Park
,
S. Y.
,
Yoon
,
S. H.
,
Yu
,
S. S.
, and
Kim
,
B. J.
,
2022
, “
Numerical Investigation on the Principle of Energy Separation in the Vortex Tube
,”
Appl. Sci.
,
12
(
19
), p.
10142
.
37.
Guo
,
X.
, and
Zhang
,
B.
,
2018
, “
Computational Investigation of Precessing Vortex Breakdown and Energy Separation in a Ranque–Hilsch Vortex Tube
,”
Int. J. Refrig.
,
85
, pp.
42
57
.
38.
Guo
,
X.
,
Zhang
,
B.
, and
Shan
,
Y.
,
2021
, “
LES Study on the Working Mechanism of Large-Scale Precessing Vortices and Energy Separation Process of Ranque-Hilsch Vortex Tube
,”
Int. J. Therm. Sci.
,
163
, p.
106818
.
39.
Fuqua
,
M. N.
, and
Rutledge
,
J. L.
,
2024
, “
An Experimental and Computational Investigation of Ranque–Hilsch Vortex Tube Heat Transfer Characteristics
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
2
), p.
021001
.
40.
Panton
,
R. L.
,
2013
,
Incompressible Flow
,
Wiley
,
Hoboken, NJ
.
41.
John
,
J. E. A.
,
1984
,
Gas Dynamics
,
Allyn & Bacon
,
Boston, MA
.
42.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2013
, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1, National Standard Reference Data Series (NIST NSRDS),
National Institute of Standards and Technology
,
Gaithersburg, MD
.
You do not currently have access to this content.