The rough surface contact in a tribological process involves frictional heating and thermoelastic deformations. A three-dimensional thermal-mechanical asperity contact model has been developed, which takes into account steady-state heat transfer, asperity distortion due to thermal and elastic deformations, and material yield. The finite-element method (FEM), fast Fourier transform (FFT), and conjugate gradient method (CGM) are employed as the solution methods. The model is used to analyze the thermal-mechanical contact of typical rough surfaces and investigate the importance of thermal effects on the contact performance of surface asperities.

1.
Lee
,
S. C.
, and
Ren
,
N.
,
1996
, “
Behavior of Elastic-Plastic Rough Surface Contact as Affected by Surface Topography, Load, and Material Hardness
,”
STLE Tribol. Trans.
,
39
, pp.
16
71
.
2.
Kral
,
E. R.
, and
Komvopoulos
,
K.
,
1997
, “
Three-Dimensional Finite Element Analysis of Subsurface Stress and Strain Fields Due to Sliding Contact on an Elastic-Plastic Layered Medium
,”
ASME J. Tribol.
,
119
, pp.
332
341
.
3.
Lubrecht
,
A. A.
, and
Ioannides
,
E.
,
1991
, “
A Fast Solution of the Dry Contact problem and the Associated Subsurface Stress Field, Using Multilevel Techniques
,”
ASME J. Tribol.
,
113
, pp.
128
133
.
4.
Merriman
,
T.
, and
Kannel
,
J.
,
1989
, “
Analyses of the Role of Surface Roughness on Contact Stresses Between Elastic Cylinders With and Without Soft Surface Coating
,”
ASME J. Tribol.
,
111
, pp.
87
94
.
5.
Goryacheva
,
I.
,
Sadeghi
,
F.
, and
Nickel
,
D. A.
,
1996
, “
Internal Stresses in Contact of a Rough Body and a Viscoelastic Layered Semi-Infinite Plane
,”
ASME J. Tribol.
,
118
, pp.
131
136
.
6.
Sayles
,
R. S.
,
1996
, “
Basic Principles of Rough Surface Contact Analysis Using Numerical Methods
,”
Tribol. Int.
,
29
, pp.
639
650
.
7.
Azarkhin
,
A.
,
Barber
,
J. R.
, and
Rolf
,
R. L.
,
1989
, “
Combined Thermal-Mechanical Effects in Frictional Sliding
,”
Key Eng. Mater.
,
33
, pp.
135
160
.
8.
Ting
,
B. Y.
, and
Winer
,
W. O.
,
1989
, “
Frictional-Induced Thermal Influences in Elastic Contact Between Spherical Asperities
,”
ASME J. Tribol.
,
111
, pp.
315
322
.
9.
Ju
,
Y.
, and
Farris
,
T. N.
,
1997
, “
FFT Thermoelastic Solutions for Moving Heat Sources
,”
ASME J. Tribol.
,
119
, pp.
156
162
.
10.
Lu
,
C. T.
, and
Bryant
,
M. D.
,
1994
, “
Evaluation of Subsurface Stresses in a Thermal Mound with Application to Wear
,”
Wear
,
177
, pp.
15
24
.
11.
Liu
,
G.
,
Wang
,
Q.
, and
Lin
,
C.
,
1999
, “
A Survey of Current Models for Simulating the Contact between Rough Surfaces
,”
STLE Tribol. Trans.
,
42
, pp.
581
591
.
12.
Liu
,
G.
, and
Wang
,
Q.
,
2000
, “
Thermoelastic Asperity Contacts, Frictional Shear, and Parameter Correlations
,”
ASME J. Tribol.
,
122
, pp.
300
307
.
13.
Wang
,
Q.
, and
Liu
,
G.
,
1999
, “
A Thermoelastic Asperity Contact Model Considering Steady-State Heat Transfer
,”
STLE Tribol. Trans.
,
42
, No.
4
, pp.
763
770
.
14.
Huang
,
J. H.
, and
Ju
,
F. D.
,
1985
, “
Thermomechanical Cracking Due to Moving Frictional Loads
,”
Wear
,
102
, pp.
81
104
.
15.
Ju
,
Y.
, and
Farris
,
T. N.
,
1996
, “
Spectral Analysis of Two-Dimensional Contact Problems
,”
ASME J. Tribol.
,
118
, pp.
320
328
.
16.
Stanley
,
H. M.
, and
Kato
,
T.
,
1997
, “
An FFT-Based Method for Roughness Surface Contact
,”
ASME J. Tribol.
,
119
, pp.
481
485
.
17.
Nogi
,
T.
, and
Kato
,
T.
,
1997
, “
Influence of a Hard Surface Layer on the Limit of Elastic Contact-Part I: Analysis Using a Real Surface Model
,”
ASME J. Tribol.
,
119
, pp.
493
500
.
18.
Hu
,
Y. Z.
,
Barber
,
G. C.
, and
Zhu
,
D.
,
1999
, “
Numerical Analysis for the Elastic Contact of Real Surfaces
,”
STLE Tribol. Trans.
,
42
, No.
3
, pp.
443
452
.
19.
Polonsky
,
I. A.
, and
Keer
,
L. M.
,
1999
, “
A New Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multi-Summation and Conjugate Gradient Techniques
,”
Wear
,
231
, pp.
206
219
.
20.
Polonsky
,
I. A.
, and
Keer
,
L. M.
,
2000
, “
A Fast and Accurate Method for Numerical Analysis of Elastic Layered Contacts
,”
ASME J. Tribol.
,
122
, pp.
30
35
.
21.
Polonsky
,
I. A.
, and
Keer
,
L. M.
,
2000
, “
Fast Methods for Solving Rough Contact Problems: A Comparative Study
,”
ASME J. Tribol.
122
, pp.
36
41
.
22.
Liu
,
S. B.
,
Wang
,
Q.
, and,
Liu
,
G.
,
2000
, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
,
243
, No.
1–2
, pp.
101
110
.
23.
Johnson, K. L., 1996, Contact Mechanics, Cambridge University Press, Cambridge, UK.
24.
Lee
,
S.
, and
Cheng
,
H. S.
,
1992
, “
On the Relation of Loa to Average Gap in the Contact Between Surfaces with Longitudinal Roughness
,”
STLE Tribol. Trans.
,
35
, pp.
523
529
.
25.
Love
,
A. E. H.
,
1929
, “
The Stress Produced in a Semi-Infinite Solid by Pressure on Part of the Boundary
,”
Philos. Trans. R. Soc. London, Ser. A
,
228
, pp.
377
420
.
26.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical Recipes in Fortran 77—The Art of Scientific Computing (second edition), Cambridge University Press, Cambridge, U.K.
27.
Tian
,
X.
, and
Kennedy
,
F. E.
,
1993
, “
Contact Surface Temperature Models for Finite Bodies in Dry and Boundary Lubricated Sliding
,”
ASME J. Tribol.
,
115
, pp.
411
418
.
28.
Obara
,
S.
, and
Kato
,
T.
,
1995
, “
Effect of Thermal Distortion on Wear of Composites
,”
ASME J. Tribol.
,
117
, pp.
622
628
.
You do not currently have access to this content.