Fluid film forces are generated in hydrostatic journal bearings by two types of lubrication mechanisms: the hydrostatic lubrication in the bearing recesses and hydrodynamic lubrication in the bearing lands, when operating in rotation. The combination of both lubrication mechanisms leads to hybrid journal bearings (HJB). When part of hydrostatic pressure is also dynamically modified by means of hydraulic control systems, one refers to the active lubrication. The main contribution of the present theoretical work is to show that it is possible to reduce cross-coupling stiffness and increase the direct damping coefficients by means of the active lubrication, what leads to rotor-bearing systems with larger threshold of stability.
Issue Section:
Technical Papers
1.
Sawicki
, J. T.
, Capaldi
, R. J.
, and Adams
, M. L.
, 1997
, “Experimental and Theoretical Rotordynamic Characteristics of a Hybrid Journal Bearing
,” ASME J. Tribol.
, 119
, pp. 132
–142
.2.
San Andres, L., and Childs, D., 1996, “Angled Injection—Hydrostatic Bearings Analysis and Comparison to Test Results,” ASME/STLE Joint Tribology Conference, San Francisco, USA, Paper No. 96-TRIB-10.
3.
Fayolle, P., and Childs, D. W., 1998, “Rotordynamic Evaluation of a Roughened-Land Hybrid Bearing,” ASME/STLE Tribology Conference, Toronto, Canada, Paper No. 98-TRIB-13.
4.
Stodola, A., 1925, “Kritische Wellensto¨rung infolge der Nachgiebigkeit des O¨lpolsterns im Lager,” (Critical Shaft Perturbation as a Result of the Elasticity of the Oil Cushion in the Bearings) Schweizerische Bauzeitung, 85(21), pp. 265–266.
5.
Hagg
, A. C.
, and Sankey
, G. O.
, 1956
, “Some Dynamic Properties of Oil-Film Journal Bearings with Reference to the Unbalance Vibration of Rotors
,” ASME J. Appl. Mech.
, 78
, pp. 302
–306
.6.
Sternlicht
, B.
, 1959
, “Elastic and Damping Properties of Cylindrical Journal Bearings
,” ASME J. Basic Eng.
, 81
, pp. 101
–108
.7.
Adams, M. L., and Shapiro, W., 1969, “Squeeze Film Characteristics in Flat Hydrostatic Bearings with Incompressible Flow,” 24th ASLE Annual Meeting, Paper No. 69AM3C-1.
8.
Rohde
, S. M.
, and Ezzat
, H. A.
, 1976
, “On the Dynamic Behavior of Hybrid Journal Bearings
,” ASME J. Lubr. Technol.
, 98
, pp. 90
–94
.9.
Rowe
, W. B.
, 1980
, “Dynamics and Static Properties of Recessed Hydrostatic Journal Bearings by Small Displacements Analysis
,” ASME J. Lubr. Technol.
, 102
, pp. 71
–79
.10.
Rowe
, W. B.
, and Chong
, F. S.
, 1986
, “Computational of Dynamic Force Coefficients for Hybrid (Hydrostatic/Hydrodynamic) Journal Bearing by Finite Disturbance and Perturbation Techniques
,” Tribol. Int.
, 19
(5
), pp. 260
–271
.11.
Rowe, W. B., and Chong, F. S. 1984, “A Linearized Stability Analysis of Rigid and Flexible Rotors in Plain Hybrid (Hydrostatic/Hydrodynamic) Journal Bearings,” IMechE Paper No. C262/84.
12.
Chen
, Y. S.
, Wu
, H. Y.
, and Xie
, P. L.
, 1985
, “Stability of Multirecess Hybrid-Operating Oil Journal Bearings
,” ASME J. Tribol.
, 107
, pp. 116
–121
.13.
Ghosh
, M. K.
, and Viswanath
, N. S.
, 1987
, “Recess Volume Fluid Compressibility Effect on the Dynamic Characteristics of Multirecess Hydrostatic Journal Bearings with Journal Rotation
,” ASME J. Tribol.
, 109
, pp. 417
–426
.14.
Ghosh
, M. K.
, Guha
, S. K.
, and Majumdar
, B. C.
, 1989
, “Rotor-dynamic Coefficients of Multirecess Hybrid Bearings—Part I
,” Wear
, 129
, pp. 245
–259
.15.
Guha
, S. K.
, Ghosh
, M. K.
, and Majumdar
, B. C.
, 1989
, “Rotor-dynamic Coefficients of Multirecess Hybrid Bearings—Part II: Fluid Inertia Effect
,” Wear
, 129
, pp. 261
–272
.16.
Artiles, A., Walowit, J., and Shapiro, W., 1982, “Analysis of Hybrid Fluid Film Journal Bearings with Turbulence and Inertia Effects,” Advances in Computer Aided Bearing Design, ASME, New York, pp. 25–52.
17.
San Andre´s
, L.
, 1990
, “Approximate Analysis of Turbulent Hybrid Bearings. Static and Dynamic Performance for Centered Operation
,” ASME J. Tribol.
, 112
, pp. 692
–698
.18.
San Andre´s
, L.
, 1990
, “Turbulent Hybrid Bearings With Fluid Inertia Effects
,” ASME J. Tribol.
, 112
, pp. 699
–707
.19.
San Andres
, L. A.
, 1991
, “Effects of Fluid Compressibility on the Dynamic Response of Hydrostatic Journal Bearings
,” Wear
, 146
, pp. 269
–283
.20.
Yang, Z., San Andres, L., and Childs, D., 1994, “Process Liquid Turbulent Flow Hydrostatic Bearings: Analysis and Test for Rotordynamic Coefficients,” Proceedings of the 4th International IFToMM Rotordynamics Conference, pp. 233–242.
21.
Braun
, M. J.
, Wheeler
, R. L.
, and Hendricks
, R. C.
, 1987
, “A Fully Coupled Variable Properties Thermohydraulic Model for a Cryogenic Hydrostatic Journal Bearing
,” ASME J. Tribol.
, 109
, pp. 405
–416
.22.
Braun
, M. J.
, Zhou
, Y. M.
, and Choy
, F. K.
, 1994
, “Transient Flow Patterns and Pressures Characteristics in a Hydrostatic Pocket
,” ASME J. Tribol.
, 116
, pp. 139
–146
.23.
Braun
, M. J.
, Choy
, F. K.
, and Zhu
, N.
, 1995
, “Flow Patterns and Dynamic Characteristics of a Lightly Loaded Hydrostatic Pocket of Variable Aspect Ratio and Supply Jet Strength
,” STLE Tribol. Trans.
, 38
(1
), pp. 128
–136
.24.
Sinhasan
, R.
, Sharma
, S. C.
, and Jain
, S. C.
, 1991
, “Performance Characteristics of Externally Pressurized Orifice Compensated Flexible Journal Bearing
,” STLE Tribol. Trans.
, 34
(3
), pp. 465
–471
.25.
Bou-Saı¨d
, B.
, and Nicolas
, D.
, 1992
, “Effects of Misalignment on Static and Dynamics Characteristics of Hybrid Bearings
,” STLE Tribol. Trans.
, 35
(2
), pp. 325
–331
.26.
Sharma
, S. C.
, Sinhasan
, R.
, Jain
, S. C.
, Singh
, N.
, and Singh
, S. K.
, 1998
, “Performance of Hydrostatic/Hybrid Journal Bearings with Unconventional Recess Geometries
,” STLE Tribol. Trans.
, 41
(3
), pp. 375
–381
.27.
Lund
, J. W.
, 1987
, “Review of the Concept of Dynamic Coefficients for Fluid Film Journal Bearings
,” ASME J. Tribol.
, 109
, pp. 37
–41
.28.
Santos, I. F., 1994, “Design and Evaluation of Two Types of Active Tilting Pad Journal Bearings,” Active Control of Vibration, C. R. Burrows and P. S. Keogh, eds., Mech. Eng. Publication Ltd., London, pp. 79–87.
29.
Santos
, I. F.
, and Russo
, F. H.
, 1998
, “Tilting-Pad Journal Bearings With Electronic Radial Oil Injection
,” ASME J. Tribol.
, 120
, pp. 583
–594
.30.
Santos, I. F., and Scalabrin, A., 2000, “Control System Design for Active Lubrication with Theoretical and Experimental Examples,” ASME/IGTI International Gas Turbine and Aeroengine Congress and Exhibition, Munich, Germany, Paper 2000-GT-643.
31.
Bently, D. E., Grant, J. W., and Hanifan, P. C., 2000, “Active Controlled Hydrostatic Bearings for a New Generation of Machines,” ASME/IGTI International Gas Turbine and Aeroengine Congress and Exhibition, Munich, Germany, Paper No. 2000-GT-354.
32.
Lund, J. W., and Thomsen, K. K., 1978, “A Calculation Method and Data for the Dynamic Coefficients of Oil Lubricated Journal Bearings,” in Topics in Fluid Film Bearings and Rotor Bearing System Design and Optimization, ASME, New York, pp. 1–28.
33.
Merrit, H. E., 1967, Hydraulic Control System, John Wiley & Sons, New York.
34.
Thayer, W. J., 1965, “Transfer Functions for Moog Servovalves,” Moog Technical Bulletin 103.
35.
Neal, T. P., 1974, “Performance Estimation for Electrohydraulic Control Systems,” Moog Technical Bulletin 126.
Copyright © 2004
by ASME
You do not currently have access to this content.