This paper presents a temporal study using dynamic finite element methods of the dynamic response of a 2D mechanical model composed of a deformable rotating disk (wheel) in contact with a deformable translating body (rail) with constant Coulomb friction. Under global sliding conditions, oscillatory states at specific frequencies occur in the contact patch even in the case of a constant friction coefficient. A parallel is drawn between the frequencies of these states and the modal analysis of the entire mechanical model. The influence on local contact conditions of parameters such as normal load, global sliding ratio, friction coefficient, and the transient value for applying sliding conditions is then evaluated. Finally, the consequences of these states on local rail plastic deformation are presented and correlated with rail corrugation occurring on straight tracks under acceleration and deceleration conditions.

1.
Kalker
,
J. J.
, 1990,
Three-Dimensional Elastic Bodies in Rolling Contact
,
Kluwer
, Dordrecht, The Netherlands.
2.
Müller
,
S.
, 2000, “
A Linear Wheel-Rail Model to Investigate Stability and Corrugation on Straight Track
,”
Wear
0043-1648,
243
, pp.
122
132
.
3.
Andersson
,
C.
, and
Johansson
,
A.
, 2004, “
Prediction of Rail Corrugation Generated by Three Dimensional Wheel-Rail Interaction
,”
Wear
0043-1648,
257
, pp.
423
434
.
4.
Böhmer
,
A.
,
Keudel
,
J.
,
Knothe
,
K.
, and
Theiler
,
A.
, 2003, “
Numerical Investigations of the Curving Behaviour of a Y25 Freight Car Bogie
,”
Proceedings of the Fifth International Conference on Railways Bogies and Running Gears
,
I.
Zobory
, ed., Budapest, Hungary, September 24-26, pp.
115
127
.
5.
Linck
,
V.
,
Baillet.
,
L.
, and
Berthier
,
Y.
, 2003, “
Modeling the Consequences of Local Kinematics of the First Body on Friction and on Third Body Sources in Wear
,”
Wear
0043-1648,
255
, pp.
299
308
.
6.
Baillet
,
L.
, and
Sassi
,
T.
, 2002, “
Finite Element Method With Lagrange Multipliers for Contact Problems With Friction
,”
C. R. Acad. Sci., Ser. I: Math.
0764-4442,
334
, pp.
917
922
.
7.
Baillet
,
L.
, and
Sassi.
,
T.
, 2005, “
Mixed Finite Element Formulation in Large Deformation Frictional Contact Problem
,”
Revue Européenne des Elements Finis
,
14
(
2-3
), pp.
287
304
.
8.
Carpenter
,
N. J.
,
Taylor
,
R. L.
, and
Katona
,
M. G.
, 1991, “
Lagrange Constraints for Transient Finite Element Surface Contact
,”
Int. J. Numer. Methods Eng.
0029-5981,
32
, pp.
103
128
.
9.
Lazan
,
B.
, 1968,
Damping of Materials and Members in Structural Mechanics
, 1st ed.,
Pergamon
, Oxford, UK, p.
317
.
10.
Berthier
,
Y.
,
Descartes
,
S.
,
Busquet
,
M.
,
Niccolini
,
E.
,
Desrayaud
,
C.
,
Baillet
,
L.
, and
Baietto-Dubourg
,
M. C.
, 2004, “
The Role and Effect of Third Body in the Wheel-Rail Interaction
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
27
, pp.
423
436
.
11.
Saulot
,
A.
,
Descartes
,
S.
,
Desmyter
,
D.
,
Levy
,
D.
, and
Berthier
,
Y.
, 2005, “
A Tribological Characterization of the “Damage Mechanism” of Low Rail Corrugation on Sharp Curved Track
,”
Wear
0043-1648,
60
, pp.
984
995
.
12.
Ertz
,
M.
, and
Knothe
,
K.
, 2002, “
A Comparison of Analytical and Numerical Methods for the Calculation of Temperatures in Wheel-Rail Contact
,”
Wear
0043-1648,
253
, pp.
498
508
.
13.
Baillet
,
L.
,
Linck
,
V.
,
D’errico
,
S.
,
Laulagnet
,
B.
, and
Berthier
,
Y.
, 2005, “
Finite Element Simulation of Dynamic Instabilities in Frictional Sliding Contact
,”
ASME J. Tribol.
0742-4787,
127
, pp.
652
657
.
14.
Nielsen
,
J. C. O.
,
Lunden
,
R.
,
Johansson
,
A.
, and
Vernersson
,
T.
, 2003, “
Train-Track Interaction and Mechanisms of Irregular Wear on Wheel and Rail Surfaces
,”
Veh. Syst. Dyn.
0042-3114,
40
, pp.
3
54
.
15.
Oueslati
,
A.
,
Nguyen
,
Q. S.
, and
Baillet
,
L.
, 2003, “
Stick-Slip-Separation Waves in Unilateral and Frictional Contact
,”
C. R. Acad. Sci., Ser. I: Math.
0764-4442,
331
, pp.
133
140
.
16.
Massi
,
F.
, and
Baillet
,
L.
, 2005, “
Numerical Analysis of Squeal Instability
,” NOVEM, on CD-ROM.
17.
Gomez
,
I.
, and
Vadillo
,
E. G.
, 2003, “
A Linear Model to Explain Short Pitch Corrugation on Rails
,”
Wear
0043-1648,
255
, pp.
1127
1142
.
18.
Knothe
,
K.
,
Wille
,
F.
, and
Zastrau
,
B.
, 2001, “
Advanced Contact Mechanic-Road and Rail
,”
Veh. Syst. Dyn.
0042-3114,
35
, pp.
361
407
.
19.
Wang
,
F.
, and
Keer
,
L. M.
, 2005, “
Numerical Simulation for Three Dimensional Elastic-Plastic Contact with Hardening Behavior
,”
ASME J. Tribol.
0742-4787,
127
, pp.
494
502
.
20.
Saulot
,
A.
,
Descartes
,
S.
,
Baillet
,
L.
, and
Berthier
,
Y.
, “
Characterization of the Flows of the Tribological Circuit Responsible for Corrugation on Both Straight and Sharp Curved Tracks
,” (unpublished).
21.
Heinsch
,
M.
,
Nielsen
,
J. C. O.
, and
Verheijen
,
E.
, 2002, “
Rail Corrugation in the Netherlands–Measurements and Simulations
,”
Wear
0043-1648,
253
, pp.
140
149
.
22.
Wild
,
E.
,
Wang
,
L.
,
Hasse
,
B.
,
Wroblewski
,
T.
,
Goerigk
,
G.
, and
Pyzalla
,
A.
, 2003, “
Microstructure Alterations at the Surface of a Heavily Corrugated Rail with Strong Ripple Formation
,”
Wear
0043-1648,
254
, pp.
876
883
.
You do not currently have access to this content.