A general transient elastohydrodynamic lubrication model was developed for artificial hip joint implants, particularly in which the three-dimensional time-dependent physiological load and motion components experienced during walking conditions were considered in the theoretical formulation, although only a predominantly vertical load combined with a flexion-extension motion was actually solved. A nominal ball-in-socket configuration was adopted to represent the articulation between the femoral head and the acetabular cup in both simplified and anatomical positions. An appropriate spherical coordinate system and the corresponding mesh grids were used in the general transient lubrication model. Additionally, an equivalent discrete spherical convolution model and the corresponding spherical fast Fourier transform technique were employed to facilitate the evaluation of elastic deformation of spherical bearing surfaces in hip joint implants. The general lubrication model was subsequently applied to investigate the transient lubrication performance of a typical metal-on-metal hip joint implant. The effects of both cup inclination angles in either anatomical or horizontally simplified positions and different lubricant viscosities on the transient elastohydrodynamic lubrication were analyzed under the predominant components of vertically dynamic loading and flexion-extension motion. It was found that the general lubrication model and the numerical methodology were efficient for the transient elastohydrodynamic lubrication analysis during walking condition in hip joint implants. Furthermore, the significant effect of squeeze-film action on maintaining and enhancing the total thin film thickness formation was discussed for the transient lubrication study of the typical hip joint implant.

1.
Brown
,
S. S.
, and
Clarke
,
I. C.
, 2006, β€œ
A Review of Lubrication Conditions for Wear Simulation in Artificial Hip Joint Replacements
,”
STLE Tribol. Trans.
1040-2004,
49
, pp.
72
–
78
.
2.
Ingham
,
E.
, and
Fisher
,
J.
, 2005, β€œ
The Role of Macrophages in Osteolysis of Total Joint Replacement
,”
Biomaterials
0142-9612,
26
(
11
), pp.
1271
–
1286
.
3.
Scholes
,
S. C.
, and
Unsworth
,
A.
, 2000, β€œ
Comparison of Friction and Lubrication of Different Hip Prostheses
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
214
(
1
), pp.
49
–
57
.
4.
Dowson
,
D.
,
Hardaker
,
C.
,
Flett
,
M.
, and
Isaac
,
G.
, 2004, β€œ
A Hip Joint Simulator Study of the Performance of Metal-on-Metal Joints
,”
J. Arthroplasty
0883-5403,
19
(
8
), pp.
118
–
123
.
5.
Tipper
,
J. L.
,
Ingham
,
E.
,
Jin
,
Z. M.
, and
Fisher
,
J.
, 2005, β€œ
The Science of Metal-on-Metal Articulation
,”
Curr. Orthop.
,
19
, pp.
280
–
287
.
6.
Paul
,
J. P.
, 1967, β€œ
Forces Transmitted by Joints in the Human Body
,”
Proc. Inst. Mech. Eng.
0020-3483,
181
(
3J
), pp.
8
–
15
.
7.
Growney
,
E.
,
Meglan
,
D.
,
Johson
T.
,
Cahalan
,
T.
, and
An
,
K.
, 1997, β€œ
Repeated Measures of Adult Normal Walking Using a Video Tracking System
,”
Gait and Posture
0966-6362,
6
, pp.
147
–
162
.
8.
Unsworth
,
A.
,
Dowson
,
D.
, and
Wright
,
V.
, 1975, β€œ
The Frictional Behaviour of Human Synovial Joints-Part II. Artificial Joints
,”
ASME J. Lubr. Technol.
0022-2305,
97
(
3
), pp.
377
–
382
.
9.
Goenka
,
P. K.
, and
Booker
,
J. F.
, 1980, β€œ
Spherical Bearings: Static and Dynamics Analysis via the Finite Element Method
,”
ASME J. Lubr. Technol.
0022-2305,
102
(
7
), pp.
308
–
319
.
10.
Goenka
,
P. K.
, 1980, β€œ
Effect of Surface Ellipticity on Dynamically Loaded Spherical and Cylindrical Joints and Bearings
,” Ph.D. thesis, Cornell University, Ithaca, NY.
11.
Kothari
,
M.
,
Booker
,
J. F.
, and
Bartel
,
D. L.
, 1995, β€œ
Analysis of Artificial Hip Joints as Spherical Bearings
,”
Proceedings of 21st Leeds-Lyon Symposium on Tribology
,
Leeds
, pp.
93
–
98
.
12.
Ai
,
X. L.
, and
Cheng
,
H. S.
, 1996, β€œ
Hydrodynamic Lubrication Analysis of Metallic Hip Joint
,”
Tribol. Trans.
1040-2004,
39
(
1
), pp.
103
–
111
.
13.
Jin
,
Z. M.
, and
Dowson
,
D.
, 1999, β€œ
A Full Numerical Analysis of Hydrodynamic Lubrication in Artificial Hip Joint Replacements Constructed From Hard Materials
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
213
(
4
), pp.
355
–
370
.
14.
Meyer
,
D. M.
, and
Tichy
,
J. A.
, 1999, β€œ
Lubrication Model of an Artificial Hip Joint: Pressure Profile Versus Inclination Angle of the Acetabular Cup
,”
ASME J. Tribol.
0742-4787,
121
(
3
), pp.
492
–
498
.
15.
Meyer
,
D. M.
, and
Tichy
,
J. A.
, 2003, β€œ
3-D Model of a Total Hip Replacement in Vivo Providing Hydrodynamic Pressure and Film Thickness for Walking and Bicycling
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
6
), pp.
777
–
784
.
16.
Medley
,
J. B.
,
Krygier
,
J. J.
,
Bobyn
,
J. D.
,
Chan
,
F. W.
,
Lippincott
,
A.
, and
Tanzer
,
M.
, 1997, β€œ
Kinematics of the MATCOβ„’ Hip Simulator and Issues Related to Wear Testing of Metal-Metal Implants
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
211
(
1
), pp.
89
–
99
.
17.
Jin
,
Z. M.
,
Dowson
,
D.
, and
Fisher
,
J.
, 1997, β€œ
Analysis of Fluid Film Lubrication in Artificial Hip Joint Replacements With Surfaces of High Elastic Modulus
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
211
(
1
), pp.
247
–
256
.
18.
Jalali-Vahid
,
D.
,
Jagatia
,
M.
,
Jin
,
Z. M.
, and
Dowson
,
D.
, 2001, β€œ
Prediction of Lubricating Film Thickness in a Ball-in-Socket Model With a Soft Lining Representing Human Natural and Artificial Hip Joints
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
215
(
4
), pp.
363
–
372
.
19.
Jalali-Vahid
,
D.
,
Jin
,
Z. M.
, and
Dowson
,
D.
, 2003, β€œ
Elastohydrodynamic Lubrication Analysis of Hip Implants Under Transient Conditions
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
217
(
7
), pp.
767
–
777
.
20.
Jagatia
,
M.
, and
Jin
,
Z. M.
, 2002, β€œ
Analysis of Elastohydrodynamic Lubrication in a Novel Metal-on-Metal Hip Joint Replacement
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
216
(
3
), pp.
185
–
193
.
21.
Jagatia
,
M.
, and
Jin
,
Z. M.
, 2001, β€œ
Elastohydrodynamic Lubrication of Metal-on-Metal Hip Prosthesis Under Steady-State Entraining Motion
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
215
(
6
), pp.
531
–
541
.
22.
Udofia
,
I. J.
, and
Jin
,
Z. M.
, 2003, β€œ
Elastohydrodynamic Lubrication Analysis of Metal-on-Metal Hip Resurfacing Prostheses
,”
J. Biomech.
0021-9290,
36
(
4
), pp.
537
–
544
.
23.
Wang
,
F. C.
, and
Jin
,
Z. M.
, 2005, β€œ
Elastohydrodynamic Lubrication Modeling of Artificial Hip Joints Under Steady-State Conditions
,”
ASME J. Tribol.
0742-4787,
127
(
10
), pp.
729
–
739
.
24.
Wang
,
F. C.
, and
Jin
,
Z. M.
, 2004, β€œ
Prediction of Elastic Deformation of Acetabular Cup and Femoral Head for Lubrication Analysis of Artificial Hip Joints
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
218
, pp.
201
–
209
.
25.
Wang
,
F. C.
,
Liu
,
F.
, and
Jin
,
Z. M.
, 2004, β€œ
A General Elastohydrodynamic Lubrication Analysis of Artificial Hip Joints Employing a Compliant Layered Socket Under Steady Rotation
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
218
, pp.
283
–
290
.
26.
Liu
,
F.
,
Wang
,
F. C.
,
Jin
,
Z. M.
,
Hirt
,
F.
,
Rieker
,
G.
, and
Grigoris
,
P.
, 2004, β€œ
Steady-State Elastohydrodynamic Lubrication Analysis of a Metal-on-Metal Hip Implant Employing a Metallic Cup With an Ultra-High Molecular Weight Polyethylene Backing
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
218
, pp.
261
–
270
.
27.
Liu
,
F.
,
Jin
,
Z. M.
,
Hirt
,
F.
,
Rieker
,
C.
,
Roberts
,
P.
, and
Grigoris
,
P.
, 2006, β€œ
Transient Elastohydrodynamic Lubrication Analysis of Metal-on-Metal Hip Implant Under Simulated Walking Conditions
,”
J. Biomech.
0021-9290,
39
(
6
), pp.
905
–
914
.
28.
Wang
,
F. C.
,
Jin
,
Z. M.
, and
Udofia
,
I.
, 2005, β€œ
Elastohydrodynamic Lubrication Modeling of Spherical Metal-on-Metal Artificial Hip Joints
,”
ASME Proceedings of the World Tribology Congress III
,
Washington, DC
, pp.
489
–
490
.
29.
Wang
,
F. C.
,
Galvin
,
A.
,
Jin
,
Z. M.
,
Ingham
,
E.
, and
Fisher
,
J.
, 2005, β€œ
An Integrated Experimental and Theoretical Contact Mechanics Study of UHMWPE Hip Implants Tested in a Hip Simulator
,”
ASME Proceedings of the World Tribology Congress III
,
Washington, DC
, pp.
311
–
312
.
30.
Wang
,
F. C.
, and
Jin
,
Z. M.
, 2007, β€œ
Effect of Non-Spherical Bearing Geometry on Transient Elastohydrodynamic Lubrication in Metal-on-Metal Hip Joint Implants
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
221
(
J3
), pp.
379
–
389
.
31.
Wang
,
F. C.
, and
Jin
,
Z. M.
, 2004, β€œ
Lubrication Modeling of Artificial Hip Joints: From Fluid Film to Boundary Lubrication Regimes
,”
Proceedings of the Seventh Biennial Conference on Engineering Systems Design and Analysis
,
Manchester, UK
, pp.
605
–
611
.
32.
Wang
,
F. C.
, and
Jin
,
Z. M.
, 2006, β€œ
Lubrication Modeling of Artificial Hip Joints
,”
IUTAM Symposium on Elastohydrodynamic and Micro-Elastohydrodynamic 134: Book Series: Solid Mechanics and Its Applications
,
R. W.
Snidle
, and
H. P.
Evans
, eds.,
Springer
,
New York
, pp.
385
–
396
.
33.
Medley
,
J. B.
,
McGarry
,
W.
,
Campbell
,
P.
,
De Smet
,
K.
, and
Amstutz
,
H. C.
, 2007, β€œ
Well-Positioned Large Diameter Surface Replacements Can Have Low Wear In Vivo
,”
Trans. Annu. Meet. - Orthop. Res. Soc.
0149-6433,
32
, paper No.
1696
.
34.
Chan
,
F. W.
,
Bobyn
,
J. D.
,
Medley
,
J. B.
,
Krygier
,
J. J.
, and
Tanzer
,
M.
, 1999, β€œ
Wear and Lubrication of Metal-on-Metal Hip Joints
,”
Clin. Orthop. Relat. Res.
0009-921X,
369
, pp.
10
–
24
.
35.
Yao
,
J. Q.
,
Laurent
,
M. P.
,
Johnson
,
T. S.
,
Blanchard
,
C. R.
, and
Crowninshield
,
R. D.
, 2003, β€œ
The Influence of Lubricant and Material on Polymer/CoCr Sliding Friction
,”
Wear
0043-1648,
255
, pp.
780
–
784
.
36.
Cooke
,
A. V.
,
Dowson
,
D.
, and
Wright
,
V.
, 1978, β€œ
The Rheology of Synovial Fluid and Some Potential Synthetic Lubricants for Degenerate Synovial Joints
,”
Eng. Med.
0046-2039,
7
, pp.
66
–
72
.
37.
Dowson
,
D.
,
McNie
,
C. M.
, and
Goldsmith
,
A. A. J.
, 2000, β€œ
Direct Experimental Evidence of Lubrication in a Metal-on-Metal Total Hip Replacement Tested in a Joint Simulator
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
214
, pp.
75
–
86
.
38.
Kaddick
,
C.
, and
Wimmer
,
M. A.
, 2001, β€œ
Hip Simulator Wear Testing According to the Newly Introduced Standard ISO 14242
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
215
(
5
), pp.
429
–
442
.
39.
Meyer
,
D. M.
, 2003, β€œ
Reynolds Equation for Spherical Bearings
,”
ASME J. Tribol.
0742-4787,
125
(
1
), pp.
203
–
206
.
40.
Brockett
,
C.
,
Williams
,
S.
,
Jin
,
Z.
,
Isaac
,
G.
, and
Fisher
,
J.
, 2007, β€œ
Friction of Total Hip Replacements With Different Bearings and Loading Conditions
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
1552-4973,
81B
(
2
), pp.
508
–
515
.
41.
Williams
,
S.
,
Jalali-Vahid
,
D.
,
Brockett
,
C.
,
Jin
,
Z.
,
Stone
,
M. H.
,
Ingham
,
E.
, and
Fisher
,
J.
, 2006, β€œ
Effect of Swing Phase Load on Metal-on-Metal Hip Lubrication, Friction and Wear
,”
J. Biomech.
0021-9290,
39
(
12
), pp.
2274
–
2281
.
42.
Dowson
,
D.
, 2006, β€œ
Tribological Principles in Metal-on-Metal Hip Joint Design
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
220
(
2
), pp.
161
–
171
.
You do not currently have access to this content.