A hybrid interactive/optimization technique is used to derive in approximate closed-form equations relating contact load to mean plane separation. Equations governing Hertz contact for the interaction of surface asperities are considered in which asperity shoulder-to-shoulder contact results in normal and tangential components of force. The normal component of asperity force is summed statistically to find total normal force between the two surfaces. The tangential force over a half-plane corresponding to a select direction is found accounting for the directionality of the tangential component of asperity forces. Two sets of approximate equations are found for each of the normal and half-plane tangential force components. The simplest forms of the approximate equations achieve accuracy to within 5% error, while other forms yield approximation error within 0.2%.

1.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
, 1970, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng.
0020-3483,
185
, pp.
625
633
.
2.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London
0962-8452,
295
, pp.
300
319
.
3.
McCool
,
J. I.
, 2000, “
Extending the Capability of the Greenwood Williamson Microcontact Model
,”
ASME J. Tribol.
0742-4787,
122
(
3
), pp.
496
502
.
4.
McCool
,
J. I.
, 1992, “
Non-Gaussian Effects in Microcontact
,”
Int. J. Mach. Tools Manuf.
0890-6955,
32
(
1
), pp.
115
123
.
5.
Borodich
,
F. M.
, and
Mosolov
,
A. B.
, 1992, “
Fractal Roughness in Contact Problems
,”
J. Appl. Math.
1110-757X,
56
(
5
), pp.
681
690
.
6.
Polycarpou
,
A. A.
, and
Etsion
,
I.
, 1999, “
Analytical Approximations in Modeling Contacting Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
121
, pp.
234
239
.
7.
Yu
,
N.
, and
Polycarpou
,
A. A.
, 2002, “
Contact of Rough Surfaces With Asymmetric Distribution of Asperity Heights
,”
ASME J. Tribol.
0742-4787,
124
(
2
), pp.
367
376
.
8.
Yu
,
N.
, and
Polycarpou
,
A. A.
, 2004, “
Combining and Contacting of Two Rough Surfaces With Asymmetric Distribution of Asperity Heights
,”
ASME J. Tribol.
0742-4787,
126
(
2
), pp.
225
232
.
9.
Hariri
,
A.
,
Zu
,
J. W.
, and
Mrad
,
R. B.
, 2006, “
n-Point Asperity Model for Contact Between Nominally Flat Surfaces
,”
ASME J. Tribol.
0742-4787,
128
(
3
), pp.
505
514
.
10.
Antoine
,
J.-F.
,
Visa
,
C.
,
Sauvey
,
C.
, and
Abba
,
G.
, 2006, “
Approximate Analytical Model for Hertzian Elliptical Contact Problems
,”
ASME J. Tribol.
0742-4787,
128
(
3
), pp.
660
664
.
11.
Ciavarella
,
M.
, and
Leoci
,
F.
, 2006, “
An Assessment of the Greenwood-Williamson and Other Asperities Models, With Special Reference to Electrical Conductance
,”
ASME J. Tribol.
0742-4787,
128
(
1
), pp.
10
17
.
12.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
, 2005, “
A Compact Model for Spherical Rough Contacts
,”
ASME J. Tribol.
0742-4787,
127
(
4
), pp.
884
889
.
13.
Wu
,
J.-J.
, 2001, “
The Properties of Asperities of Real Surfaces
,”
ASME J. Tribol.
0742-4787,
123
(
4
), pp.
872
883
.
14.
Lin
,
Y.
, and
Ovaert
,
T. C.
, 2004, “
A Rough Surface Contact Model for General Anisotropic Materials
,”
ASME J. Tribol.
0742-4787,
126
(
1
), pp.
41
49
.
15.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1987, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
109
(
2
), pp.
257
263
.
16.
Halling
,
J. I.
, and
Nuri
,
K. A.
, 1988, “
The Elastic-Plastic Contact of Rough Surfaces and its Relevance in Study of Wear
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
202
(
C4
), pp.
269
274
.
17.
So
,
H.
, and
Liu
,
D. C.
, 1991, “
An Elastic-Plastic Model for the Contact of Anisotropic Rough Surface
,”
Wear
0043-1648,
146
, pp.
201
218
.
18.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1991, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
113
(
1
), pp.
1
11
.
19.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1992, “
Elastic-Plastic Contact Model for Bifractal Surfaces
,”
Wear
0043-1648,
153
, pp.
53
64
.
20.
Yang
,
W.
, and
Komvopoulos
,
K.
, 1998, “
Contact Analysis of Elastic-Plastic Fractal Surfaces
,”
J. Appl. Phys.
0021-8979,
84
(
7
), pp.
3617
362
.
21.
Komvopoulos
,
K.
, and
Yang
,
W.
, 1998, “
Three-Dimensional Elastic-Plastic Fractal Analysis of Surface Adhesion in Microelectromechanical Systems
,”
ASME J. Tribol.
0742-4787,
120
(
4
), pp.
808
812
.
22.
Abdo
,
J.
, and
Farhang
,
K.
, 2005, “
Elastic-Plastic Contact Model for Rough Surfaces Based on Plastic Asperity Concept
,”
Int. J. Non-Linear Mech.
0020-7462,
40
, pp.
495
506
.
23.
Komvopoulos
,
K.
, and
Yang
,
W.
, 1997, “
A Fractal Analysis of Stiction in Microelectromechanical Systems
,”
ASME J. Tribol.
0742-4787,
119
(
4
), pp.
391
400
.
You do not currently have access to this content.