Simulation of deep indentation, and the associated pile-up effects, requires a robust and accurate finite element model capable of naturally handling the large deformations present. This work successfully demonstrates that the Eulerian formulation is capable of accurately reproducing the forces and general material response of deep indentation. It was found that, in the absence of friction, sink-in dominates at indentation depths less than 1.1% of the indenter radius, there is a transition from sink-in to pile-up from 1.1% to 2.3% of the indenter radius, and pile-up is fully developed at indentation depths larger than 13.2% of the indenter radius for the 4340 steel workpiece and the 0.508 mm radius indenter presented in this work. Friction tended to marginally increase the sink-in and transition depths as well as reduce the material height at the onset of fully developed pile-up due to a reduction in the tensile radial strain directly under the indenter.

1.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
2.
Tabor
,
D.
, 1951,
The Hardness of Metals
,
Oxford University Press
,
Oxford, UK
.
3.
Tirupataiah
,
H. K.
, and
Sundararajan
,
G.
, 1987, “
A Comprehensive Analysis of the Static Indentation Process
,”
Mater. Sci. Eng.
0025-5416,
91
, pp.
169
180
.
4.
Kucharski
,
S.
, and
Mroz
,
Z.
, 2001, “
Identification of Hardening Parameters of Metals From Spherical Indentation Tests
,”
ASME J. Eng. Mater. Technol.
0094-4289,
123
, pp.
245
250
.
5.
Kucharski
,
S.
, and
Mroz
,
Z.
, 2001, “
Identification of Plastic Hardening Parameters of Metals From Spherical Indentation Tests
,”
Mater. Sci. Eng., A
0921-5093,
318
, pp.
65
76
.
6.
Kucharski
,
S.
, and
Mroz
,
Z.
, 2007, “
Identification of Yield Stress and Plastic Hardening Parameters From a Spherical Indentation Test
,”
Int. J. Mech. Sci.
0020-7403,
49
, pp.
1238
1250
.
7.
Nayebi
,
A.
,
El Abdi
,
R.
,
Bartier
,
O.
, and
Mauvoisin
,
G.
, 2002, “
New Procedure to Determine Steel Mechanical Parameters From the Spherical Indentation Technique
,”
Mech. Mater.
0167-6636,
34
, pp.
243
254
.
8.
Lee
,
H.
,
Haeng Lee
,
J.
, and
Pharr
,
G. M.
, 2005, “
A Numerical Approach to Spherical Indentation Techniques for Material Property Evaluation
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
2037
2069
.
9.
Chudoba
,
T.
,
Schwarzer
,
N.
, and
Richter
,
F.
, 1999, “
New Possibilities of Mechanical Surface Characterization With Spherical Indenters by Comparison of Experimental and Theoretical Results
,”
Thin Solid Films
0040-6090,
355–356
, pp.
284
289
.
10.
Vanimisetti
,
S. K.
, and
Narasimhan
,
R.
, 2006, “
A Numerical Analysis of Spherical Indentation Response of Thin Hard Films on Soft Substrates
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
6180
6193
.
11.
Rodriguez
,
J.
, and
Garrido Maneiro
,
M. A.
, 2007, “
A Procedure to Prevent Pile Up Effects on the Analysis of Spherical Indentation Data in Elastic-Plastic Materials
,”
Mech. Mater.
0167-6636,
39
, pp.
987
997
.
12.
Taljat
,
B.
, and
Pharr
,
G. M.
, 2004, “
Development of Pile-Up During Spherical Indentation of Elastic-Plastic Solids
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
3891
3904
.
13.
Hertz
,
H.
, 1882, “
Ueber die Berührung fester elastischer Körper (On the Contact of Elastic Solids)
,”
J. Reine Angew. Math.
0075-4102,
92
, pp.
156
171
.
14.
Biwa
,
S.
, and
Storakers
,
B.
, 1995, “
An Analysis of Fully Plastic Brinell Indentation
,”
J. Mech. Phys. Solids
0022-5096,
43
, pp.
1303
1333
.
15.
Lu
,
Y. C.
,
Kurapati
,
S. N. V. R. K.
, and
Yang
,
F.
, 2008, “
Finite Element Analysis of Deep Indentation by a Spherical Indenter
,”
J. Mater. Sci.
0022-2461,
43
, pp.
6331
6336
.
16.
Benson
,
D. J.
, 1992, “
Computational Methods in Lagrangian and Eulerian Hydrocodes
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
99
, pp.
235
394
.
17.
Hallquist
,
J. O.
, 2006,
LS-DYNA Theoretical Manual
,
LSTC
,
Livermore, CA
.
18.
Aquelet
,
N.
,
Souli
,
M.
, and
Olovsson
,
L.
, 2006, “
Euler–Lagrange Coupling With Damping Effects: Application to Slamming Problems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
110
132
.
19.
Carlsson
,
S.
,
Biwa
,
S.
, and
Larsson
,
P. L.
, 2000, “
On Frictional Effects at Inelastic Contact Between Spherical Bodies
,”
Int. J. Mech. Sci.
0020-7403,
42
, pp.
107
128
.
20.
Doman
,
D. A.
,
Bauer
,
R.
, and
Warkentin
,
A.
, 2008, “
Optical Microscopy-Aided Indentation Tests
,”
ASME J. Eng. Mater. Technol.
0094-4289,
130
, p.
011008
.
21.
Mason
,
C.
, and
Worswick
,
M. J.
, 2001, “
Adiabatic Shear in Annealed and Shock-Hardened Iron and in Quenched and Tempered 4340 Steel
,”
Int. J. Fract.
0376-9429,
111
, pp.
29
51
.
22.
Guo
,
Y. B.
, and
Yen
,
D. W.
, 2004, “
A FEM Study on Mechanisms of Discontinuous Chip Formation in Hard Machining
,”
J. Mater. Process. Technol.
0924-0136,
155–156
, pp.
1350
1356
.
23.
Holmquist
,
T. J.
,
Templeton
,
D. W.
, and
Bishnoi
,
K. D.
, 2001, “
Constitutive Modeling of Aluminum Nitride for Large Strain, High-Strain Rate, and High-Pressure Applications
,”
Int. J. Impact Eng.
0734-743X,
25
, pp.
211
231
.
24.
Kurtaran
,
H.
,
Buyuk
,
M.
, and
Eskandarian
,
A.
, 2003, “
Ballistic Impact Simulation of GT Model Vehicle Door Using Finite Element Method
,”
Theor. Appl. Fract. Mech.
0167-8442,
40
, pp.
113
121
.
25.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1983, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and Temperatures
,”
Seventh International Symposium on Ballistics
, The Hague, The Netherlands, pp.
541
547
.
26.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1985, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
0013-7944,
21
(
1
), pp.
31
48
.
27.
National Instruments
, 2007, “NI Vision.”
28.
Automations Creations Inc.
, 2009, MATWEB, Online.
You do not currently have access to this content.