The Morton effect (ME) is a thermally induced instability problem that most commonly appears in rotating shafts with large overhung masses, outboard of the bearing span. The time-varying thermal bow due to the asymmetric journal temperature distribution may cause intolerable synchronous vibrations that exhibit a hysteresis behavior with respect to rotor speed. The fully nonlinear transient method designed for the ME prediction, in general, overhung rotors is proposed with the capability to perform the thermoelastohydrodynamic analysis for all the bearings and model the rotor thermal bow at both overhung ends with equivalent distributed unbalances. The more accurate nonlinear, coupled, double overhung approach is shown to provide significantly different response prediction relative to the more approximate linear method based using bearing coefficients and the single-overhung method, which assumes that the ME on both rotor ends can be decoupled. The flexibility of the bearing pad and pivot is investigated to demonstrate that the pivot flexibility can significantly affect the rotordynamics and ME, while the rigid pad model is generally a good approximation.

References

1.
De Jongh
,
F.
,
2008
, “
The Synchronous Rotor Instability Phenomenon—Morton Effect
,”
37th Turbomachinery Symposium
, College Station, TX, pp.
159
167
.
2.
Dowson
,
D.
, and
March
,
C.
,
1966
, “
Paper 6: A Thermohydrodynamic Analysis of Journal Bearings
,”
Proc. Inst. Mech. Eng.
,
181
(
15
), pp.
117
126
.
3.
Dowson
,
D.
,
Hudson
,
J.
,
Hunter
,
B.
, and
March
,
C. N.
,
1966
, “
Paper 3: An Experimental Investigation of the Thermal Equilibrium of Steadily Loaded Journal Bearings
,”
Proc. Inst. Mech. Eng.
,
181
(
2
), pp.
70
80
.
4.
Keogh
,
P.
, and
Morton
,
P.
,
1993
, “
Journal Bearing Differential Heating Evaluation With Influence on Rotor Dynamic Behaviour
,”
Proc. R. Soc. London, Ser. A
,
441
(
1913
), pp.
527
548
.
5.
Keogh
,
P.
, and
Morton
,
P.
,
1994
, “
The Dynamic Nature of Rotor Thermal Bending Due to Unsteady Lubricant Shearing Within a Bearing
,”
Proc. R. Soc. London, Ser. A
,
445
(
1924
), pp.
273
290
.
6.
Larsson
,
B.
,
1999
, “
Journal Asymmetric Heating—Part I: Nonstationary Bow
,”
ASME J. Tribol.
,
121
(
1
), pp.
157
163
.
7.
Larsson
,
B.
,
1999
, “
Journal Asymmetric Heating—Part II: Alteration of Rotor Dynamic Properties
,”
ASME J. Tribol.
,
121
(
1
), pp.
164
168
.
8.
Tucker
,
P.
, and
Keogh
,
P.
,
1996
, “
On the Dynamic Thermal State in a Hydrodynamic Bearing With a Whirling Journal Using CFD Techniques
,”
ASME J. Tribol.
,
118
(
2
), pp.
356
363
.
9.
Gomiciaga
,
R.
, and
Keogh
,
P.
,
1999
, “
Orbit Induced Journal Temperature Variation in Hydrodynamic Bearings
,”
ASME J. Tribol.
,
121
(
1
), pp.
77
84
.
10.
Balbahadur
,
A. C.
, and
Kirk
,
R.
,
2004
, “
Part I—Theoretical Model for a Synchronous Thermal Instability Operating in Overhung Rotors
,”
Int. J. Rotating Mach.
,
10
(
6
), pp.
469
475
.
11.
Kirk
,
G.
,
Guo
,
Z.
, and
Balbahadur
,
A.
,
2003
, “
Synchronous Thermal Instability Prediction for Overhung Rotors
,”
32nd Turbomachinery Symposium
, College Station, TX, pp.
8
11
.
12.
Balbahadur
,
A.
,
2001
, “
A Thermoelastohydrodynamic Model of the Morton Effect Operating in Overhung Rotors Supported by Plain or Tilting Pad Journal Bearings
,”
Ph.D. thesis
, Virginia Tech, Blacksburg, VA.
13.
Murphy
,
B.
, and
Lorenz
,
J.
,
2010
, “
Simplified Morton Effect Analysis for Synchronous Spiral Instability
,”
ASME J. Vib. Acoust.
,
132
(
5
), p.
051008
.
14.
Childs
,
D.
, and
Saha
,
R.
,
2012
, “
A New, Iterative, Synchronous-Response Algorithm for Analyzing the Morton Effect
,”
ASME J. Eng. Gas Turbines Power
,
134
(
7
), p.
072501
.
15.
Panara
,
D.
,
Panconi
,
S.
, and
Griffini
,
D.
,
2015
, “
Numerical Prediction and Experimental Validation of Rotor Thermal Instability
,”
44th Turbomachinery Symposium
, College Station, TX, Sept. 14–17, pp.
1
18
.
16.
Lee
,
J.
, and
Palazzolo
,
A.
,
2012
, “
Morton Effect Cyclic Vibration Amplitude Determination for Tilt Pad Bearing Supported Machinery
,”
ASME J. Tribol.
,
135
(
1
), p.
011701
.
17.
Dimorgonas
,
A.
,
1970
, “
Packing Rub Effect in Rotating Machinery
,” Ph.D. thesis, RPI, Troy, NY.
18.
Grigor'ev
,
B. S.
,
Fedorov
,
A. E.
, and
Schmied
,
J.
,
2015
, “
New Mathematical Model for the Morton Effect Based on the THD Analysis
,” 9th
IFToMM
International Conference on Rotor Dynamics
, Milan, Italy, pp.
2243
2253
.
19.
Suh
,
J.
, and
Palazzolo
,
A.
,
2014
, “
Three-Dimensional Thermohydrodynamic Morton Effect Simulation—Part I: Theoretical Model
,”
ASME J. Tribol.
,
136
(
3
), p.
031706
.
20.
Suh
,
J.
, and
Palazzolo
,
A.
,
2014
, “
Three-Dimensional Thermohydrodynamic Morton Effect Analysis—Part II: Parametric Studies
,”
ASME J. Tribol.
,
136
(
3
), p.
031707
.
21.
De Jongh
,
F.
, and
Van Der Hoeven
,
P.
, eds.,
1998
, “
Application of a Heat Barrier Sleeve to Prevent Synchronous Rotor Instability
,”
27th Turbomachinery Symposium
, College Station, TX, pp.
17
26
.
22.
De Jongh
,
F.
, and
Morton
,
P.
,
1996
, “
The Synchronous Instability of a Compressor Rotor Due to Bearing Journal Differential Heating
,”
ASME J. Eng. Gas Turbines Power
,
118
(
4
), pp.
816
824
.
23.
Nicholas
,
J.
,
Gunter
,
E.
, and
Allaire
,
P.
,
1976
, “
Effect of Residual Shaft Bow on Unbalance Response and Balancing of a Single Mass Flexible Rotor—Part I: Unbalance Response
,”
ASME J. Eng. Gas Turbines Power
,
98
(
2
), pp.
171
181
.
24.
Nicholas
,
J.
,
Gunter
,
E.
, and
Allaire
,
P.
,
1976
, “
Effect of Residual Shaft Bow on Unbalance Response and Balancing of a Single Mass Flexible Rotor—Part II: Balancing
,”
ASME J. Eng. Gas Turbines Power
,
98
(
2
), pp.
182
187
.
25.
Salamone
,
D.
,
1977
, “
Synchronous Unbalance Response of a Multimass Flexible Rotor Considering Shaft Warp and Disk Skew
,” Master's thesis, University of Virginia, Charlottesville, VA.
26.
Salamone
,
D.
, and
Gunter
,
E.
,
1978
, “
Effects of Shaft Warp and Disk Skew on the Synchronous Unbalance Response of a Multimass Rotor in Fluid Film Bearings
,”
ASME Fluid Film Bearing and Rotor Bearing System Design and Optimization
, pp.
79
107
.
27.
API
,
2002
, “
Axial and Centrifugal Compressors and Expander-Compressors for Petroleum, Chemical and Gas Industry Services
,” American Petroleum Institute, Washington, DC, Standard No. API 617.
28.
Kirk
,
R.
, and
Reedy
,
S.
,
1988
, “
Evaluation of Pivot Stiffness for Typical Tilting-Pad Journal Bearing Designs
,”
ASME J. Vib. Acoust. Stress Reliab.
110
(
2
), pp.
165
171
.
29.
Lund
,
J.
, and
Pedersen
,
L.
,
1987
, “
The Influence of Pad Flexibility on the Dynamic Coefficients of a Tilting Pad Journal Bearing
,”
ASME J. Tribol.
,
109
(
1
), pp.
65
70
.
30.
Suh
,
J.
,
2014
, “
Nonlinear Transient Rotor-Bearing Dynamic Analysis Considering Shaft Thermal Bow Induced Instability Problem
,” Ph.D. thesis, TAMU, College Station, TX.
31.
Young
,
W.
, and
Budynas
,
R.
,
2002
,
Roark's Formulas for Stress and Strain
, Vol.
7
,
McGraw-Hill
,
New York
.
32.
Heinrich
,
J.
,
Huyakorn
,
P.
,
Zienkiewicz
,
O.
, and
Mitchell
,
A. R.
,
1977
, “
An Upwind Finite Element Scheme for Two-Dimensional Convective Transport Equation
,”
Int. J. Numer. Methods Eng.
,
11
(
1
), pp.
131
143
.
33.
Schmied
,
J.
,
Pozivil
,
J.
, and
Walch
,
J.
,
2008
, “
Hot Spots in Turboexpander Bearings: Case History, Stability Analysis, Measurements and Operational Experience
,”
ASME
Paper No. GT2008-51179.
34.
Marin
,
M.
,
2012
, “
Rotor Dynamics of Overhung Rotors: Hysteretic Dynamic Behavior
,”
ASME
Paper No. GT2012-68285.
You do not currently have access to this content.