Abstract

This study was undertaken with the aim of modifying the microstructure and improving the tribological properties of in situ Al-20Mg2Si composite. For this purpose, friction stir processing (FSP) was applied on the composite at constant travel and rotation speeds of 110 mm/min and 1500 rpm, respectively, using three different tool pin profiles: threaded tapered cylindrical, triangular tapered, and triangular threaded tapered. The sliding wear tests were conducted using a pin-on-disc apparatus under the applied load of 30 N and sliding distance of 1000 m at room temperature. The results showed that FSP substantially improved tribological properties of the as-cast composite. The best result was observed in the sample processed by the threaded triangular tapered tool, where compared with the as-cast composite, its wear rate and average friction coefficient decreased by almost 40% and 18%, respectively. This improvement can be attributed to the significant refinement and uniform redistribution of Mg2Si intermetallics, especially the coarse irregular-shaped primary crystals, the formation of ultrafine grains, and elimination of casting defects from the substrate microstructure of the processed sample, which improves its hardness and increased its potential in supporting the oxide tribolayer on the composite surface.

References

1.
Tong
,
X.
,
Zhang
,
D.
,
Wang
,
K.
,
Lin
,
J.
,
Liu
,
Y.
,
Shi
,
Z.
,
Li
,
Y.
,
Lin
,
J.
, and
Wen
,
C.
,
2018
, “
Microstructure and Mechanical Properties of High-Pressure-Assisted Solidification of In Situ Al-Mg2Si Composites
,”
Mater. Sci. Eng.
,
733A
, pp.
9
15
. 10.1016/j.msea.2018.07.032
2.
Sun
,
Y.
,
Li
,
C.
,
Liu
,
Y.
,
Yu
,
L.
, and
Li
,
H.
,
2018
, “
Intermetallic Phase Evolution and Strengthening Effect in Al-Mg2Si Alloys With Different Cu/Ni Ratios
,”
Mater. Lett.
,
215
, pp.
254
258
. 10.1016/j.matlet.2017.12.067
3.
Du
,
R.
,
Yuan
,
D.
,
Li
,
F.
,
Zhang
,
D.
,
Wu
,
S.
, and
,
S.
,
2019
, “
Effect of In-Situ TiB2 Particles on Microstructure and Mechanical Properties of Mg2Si/Al Composites
,”
J. Alloys Compd.
,
776
, pp.
536
542
. 10.1016/j.jallcom.2018.10.301
4.
Zhu
,
J.-N.
,
Zhou
,
T.-T.
,
Zha
,
M.
,
Li
,
C.
,
Li
,
J.-H.
,
Wang
,
C.
,
Gao
,
C.-L.
,
Wang
,
H.-Y.
, and
Jiang
,
Q.-C.
,
2018
, “
Microstructure and Wear Behaviour of Al-20Mg2Si Alloy With Combined Zr and Sb Additions
,”
J. Alloys Compd.
,
767
, pp.
1109
1116
. 10.1016/j.jallcom.2018.07.032
5.
Wu
,
X.-F.
,
Wang
,
Y.
,
Wang
,
K.-Y.
,
Zhao
,
R.-D.
, and
Wu
,
F.-F.
,
2018
, “
Enhanced Mechanical Properties of Hypoeutectic Al-10Mg2Si Cast Alloys by Bi Addition
,”
J. Alloys Compd.
,
767
, pp.
163
172
. 10.1016/j.jallcom.2018.07.070
6.
Huang
,
K.-T.
,
Lui
,
T.-S.
, and
Chen
,
L.-H.
,
2006
, “
Effect of Dynamically Recrystallized Grain Size on the Tensile Properties and Vibration Fracture Resistance of Friction Stirred 5052 Alloy
,”
Mater. Trans.
,
47
(
9
), pp.
2405
2412
. 10.2320/matertrans.47.2405
7.
Zhang
,
J.
,
Fan
,
Z.
,
Wang
,
Y.
, and
Zhou
,
B.
,
1999
, “
Microstructural Refinement in Al-Mg2Si In Situ Composites
,”
J. Mater. Sci. Lett.
,
18
(
10
), pp.
783
784
. 10.1023/A:1006684916145
8.
Liu
,
T.
,
Li
,
Y.
, and
Ren
,
Y.
,
2018
, “
Effect of Pr Inoculation and Crystal Size on the Hall-Petch Relationship for Al-30 wt%Mg2Si Composites
,”
Mater. Lett.
,
214
, pp.
6
9
. 10.1016/j.matlet.2017.11.105
9.
Wu
,
X.
,
Zhang
,
G.
,
Wu
,
F.
, and
Wang
,
Z.
,
2013
, “
Influence of Neodymium Addition on Microstructure, Tensile Properties and Fracture Behavior of Cast Al-Mg2Si Metal Matrix Composite
,”
J. Rare Earths
,
31
(
3
), pp.
307
312
. 10.1016/S1002-0721(12)60277-4
10.
Ghandvar
,
H.
,
Idris
,
M. H.
, and
Ahmad
,
N.
,
2018
, “
Effect of hot Extrusion on Microstructural Evolution and Tensile Properties of Al-15%Mg2Si-xGd In-Situ Composites
,”
J. Alloys Compd.
,
751
, pp.
370
390
. 10.1016/j.jallcom.2018.04.131
11.
Jafari Nodooshan
,
H. R.
,
Liu
,
W.
,
Wu
,
G.
,
Bahrami
,
A.
,
Pech-Canul
,
M. I.
, and
Emamy
,
M.
,
2014
, “
Mechanical and Tribological Characterization of Al-Mg2Si Composites After Yttrium Addition and Heat Treatment
,”
J. Mater. Eng. Perf.
,
23
(
4
), pp.
1146
1156
. 10.1007/s11665-014-0900-4
12.
Zhao
,
Y. G.
,
Qin
,
Q. D.
,
Zhou
,
W.
, and
Liang
,
Y. H.
,
2005
, “
Microstructure of the Ce-Modified In Situ Mg2Si/Al-Si-Cu Composite
,”
J. Alloys Compd.
,
389
(
1–2
), pp.
L1
L4
. 10.1016/j.jallcom.2004.08.003
13.
Ren
,
Y.
,
Liu
,
T.
,
Li
,
Y.
, and
Hu
,
H.
,
2017
, “
Effect of La Inoculation on Composition, Content, Granularity and Mechanical Properties of In-Situ Al-30wt%Mg2Si Composite
,”
Mater. Sci. Eng.
,
704A
, pp.
119
127
. 10.1016/j.msea.2017.08.010
14.
Jiang
,
W.
,
Xu
,
X.
,
Zhao
,
Y.
,
Wang
,
Z.
,
Wu
,
C.
,
Pan
,
D.
, and
Meng
,
Z.
,
2018
, “
Effect of the Addition of Sr Modifier in Different Conditions on Microstructure and Mechanical Properties of T6 Treated Al-Mg2Si In-Situ Composite
,”
Mater. Sci. Eng.
,
721A
, pp.
263
273
. 10.1016/j.msea.2018.02.100
15.
Emamy
,
M.
,
Vaziri Yeganeh
,
S. E.
,
Razaghian
,
A.
, and
Tavighi
,
K.
,
2013
, “
Microstructures and Tensile Properties of Hot-Extruded Al Matrix Composites Containing Different Amounts of Mg2Si
,”
Mater. Sci. Eng.
,
586A
, pp.
190
196
. 10.1016/j.msea.2013.08.026
16.
Zamani
,
R.
,
Mirzadeh
,
H.
, and
Emamy
,
M.
,
2018
, “
Magnificent Grain Refinement of Al-Mg2Si Composite by Hot Rolling
,”
J. Ultrafine Grained Nanostructured Mater.
,
51
(
1
), pp.
71
76
.
17.
Ebrahimi
,
M.
,
Zarei-Hanzaki
,
A.
,
Abedi
,
H. R.
,
Azimi
,
M.
, and
Mirjavadi
,
S. S.
,
2017
, “
Correlating the Microstructure to Mechanical Properties and Wear Behavior of an Accumulative Back Extruded Al-Mg2Si In-Situ Composite
,”
Trib. Int.
,
115
, pp.
199
211
. 10.1016/j.triboint.2017.05.034
18.
Ma
,
Z. Y.
,
2009
, “
Friction Stir Processing Technology: A Review
,”
Metall. Mater. Trans. A
,
39A
(
3
), pp.
642
658
.
19.
Węglowski
,
M. S.
,
2018
, “
Friction Stir Processing-State of the Art
,”
Arch. Civil and Mech. Eng.
,
18
(
1
), pp.
114
129
. 10.1016/j.acme.2017.06.002
20.
Mishra
,
R. S.
, and
Ma
,
Z. Y.
,
2005
, “
Friction Stir Welding and Processing
,”
Mater. Sci. Eng. Reports
,
50R
(
1–2
), pp.
1
78
. 10.1016/j.mser.2005.07.001
21.
Teymoory
,
P.
,
Zarei-Hanzaki
,
A.
,
Farabi
,
E.
,
Monajati
,
H.
, and
Abedi
,
H. R.
,
2017
, “
Grain Refinement Through Shear Banding in Severely Plastic Deformed A206 Aluminum Alloy
,”
Adv. Eng. Mater.
,
20
(
1
), p.
1700502
. 10.1002/adem.201700502
22.
Yousefi
,
F.
,
Taghiabadi
,
R.
, and
Baghshahi
,
S.
,
2018
, “
Effect of Partial Substitution of Mn for Ni on Mechanical Properties of Friction Stir Processed Hypoeutectic Al-Ni Alloys
,”
Metall. Mater. Trans. B
,
49B
(
6
), pp.
3007
3018
. 10.1007/s11663-018-1422-5
23.
Mishra
,
R. S.
, and
Mahoney
,
M. W.
,
2007
,
Friction Stir Welding and Processing
,
ASM International
,
Materials Park, OH
.
24.
Ma
,
Z. Y.
,
Sharma
,
S. R.
, and
Mishra
,
R. S.
,
2006
, “
Microstructural Modification of As-Cast Al-Si-Mg Alloy by Friction Stir Processing
,”
Metall. Mater. Trans. A
,
37A
(
11
), pp.
3323
3336
. 10.1007/bf02586167
25.
Yang
,
Y.
,
Zhao
,
Y.
,
Kai
,
X.
, and
Tao
,
R.
,
2017
, “
Superplasticity Behavior and Deformation Mechanism of the In-Situ Al3Zr/6063Al Composites Processed by Friction Stir Processing
,”
J. Alloys Compd.
,
710
, pp.
225
233
. 10.1016/j.jallcom.2017.03.246
26.
Nelaturu
,
P.
,
Jana
,
S.
,
Mishra
,
R. S.
,
Grant
,
G.
, and
Carlson
,
B. E.
,
2018
, “
Influence of Friction Stir Processing on the Room Temperature Fatigue Cracking Mechanisms of A356 Aluminum Alloy
,”
Mater. Sci. Eng. A
,
716
, pp.
165
178
. 10.1016/j.msea.2018.01.044
27.
Du
,
Z.
,
Tan
,
M.-J.
,
Guo
,
J.-F.
, and
Wei
,
J.
,
2016
, “
Friction Stir Processing of Al-CNT Composites
,”
Proc. Inst. Mech. Eng. Part L
,
230
(
3
), pp.
825
833
.
28.
Srinivasu
,
R.
,
Sambasiva Rao
,
A.
,
Madhusudhan Reddy
,
G.
, and
Srinivasa Rao
,
K.
,
2015
, “
Friction Stir Surfacing of Cast A356 Aluminium–Silicon Alloy With Boron Carbide and Molybdenum Disulphide Powders
,”
Def. Tech.
,
11
(
2
), pp.
140
146
. 10.1016/j.dt.2014.09.004
29.
Zhang
,
Y. N.
,
Cao
,
X.
,
Larose
,
S.
, and
Wanjara
,
P.
,
2012
, “
Review of Tools for Friction Stir Welding and Processing
,”
Can. Metall. Q.
,
51
(
3
), pp.
250
261
. 10.1179/1879139512Y.0000000015
30.
Singh
,
C. D.
,
Singh
,
R.
,
Singh
,
R.
, and
Singh
,
K.
,
2017
,
Effect of Tool Pin Profile on Microstructure and Mechanical Properties of Al6063 in Friction Stir Processing
,
Anchor Academic Publishing
,
Hamburg
.
31.
Gangil
,
N.
,
Maheshwari
,
S.
, and
Siddiquee
,
A. N.
,
2018
, “
Influence of Tool Pin and Shoulder Geometries on Microstructure of Friction Stir Processed AA6063/SiC Composites
,”
Mech. Ind.
,
19
(2)
,
211
, pp.
1
6
. 10.1051/meca/2018010
32.
Yusof
,
N. M.
,
Razavykia
,
A.
,
Farahany
,
S.
, and
Esmaeilzadeh
,
A.
,
2016
, “
Effect of Modifier Elements on Machinability of Al-20%Mg2Si Metal Matrix Composite During Dry Turning
,”
Mach. Sci. Tech.
,
20
(
3
), pp.
460
474
. 10.1080/10910344.2016.1191030
33.
Marani
,
M.
,
Songmene
,
V.
,
Kouam
,
J.
, and
Zedan
,
Y.
,
2018
, “
Experimental Investigation on Microstructure, Mechanical Properties and Dust Emission When Milling Al-20Mg2Si-2Cu Metal Matrix Composite With Modifier Elements
,”
Int. J. Adv. Manufac. Tech.
,
99
(
1–4
), pp.
789
802
. 10.1007/s00170-018-2491-y
34.
Podprocká
,
R.
, and
Bolibruchová
,
D.
,
2017
, “
Iron Intermetallic Phases in the Alloy Based on Al-Si-Mg by Applying Manganese
,”
Arch. Found. Eng.
,
17
(
3
), pp.
217
221
. 10.1515/afe-2017-0118
35.
Chen
,
Z. H.
,
Xu
,
C.
,
Hu
,
X. L.
,
Liu
,
Z. G.
,
Yamagata
,
H.
, and
Ma
,
C. L.
,
2016
, “
Effect of Iron-Rich Intermetallic and Eutectic Si Accumulation on Al-Si-Mg Alloy
,”
Mater. Sci. Forum
,
848
, pp.
633
641
. 10.4028/www.scientific.net/MSF.848.633
36.
Asadian Nozari
,
M.
,
Taghiabadi
,
R.
,
Karimzadeh
,
M.
, and
Ghoncheh
,
M. H.
,
2018
, “
Effect of Be Modification on the Oxide Bifilms and Tensile Strength Reliability of Al-Si-Mg Alloys Containing Excess Fe
,”
Metall. Mater. Trans. B
,
49B
(
3
), pp.
1236
1245
. 10.1007/s11663-018-1224-9
37.
Belov
,
N. A.
,
Eskin
,
D. G.
, and
Aksenov
,
A. A.
,
2005
,
Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys
, 1st ed.,
Elsevier
,
UK
.
38.
Jamshidi Aval
,
H.
,
Serajzadeh
,
S.
,
Kokabi
,
A. H.
, and
Loureiro
,
A.
,
2011
, “
Effect of Tool Geometry on Mechanical and Microstructural Behaviours in Dissimilar Friction Stir Welding of AA 5086–AA 6061
,”
Sci. Tech. Weld. Joining
,
16
(
7
), pp.
597
604
. 10.1179/1362171811Y.0000000044
39.
Hutching
,
I. M.
,
1992
,
Tribology: Friction and Wear of Engineering Materials
,
Edward Arnold
,
London
.
40.
Totten
,
G. E.
,
2017
,
ASM Handbook, Vol. 18: Friction, Lubrication, and Wear Technology
,
ASM International
,
Materials Parks, OH
.
41.
Hwang
,
D.
,
Kim
,
D.
, and
Lee
,
S.
,
1999
, “
Influence of Wear Particle Interaction in the Sliding Interface on Friction of Metals
,”
Wear
,
225–229
(
Part 1
), pp.
427
439
. 10.1016/S0043-1648(98)00371-8
42.
Pouladvand
,
S.
,
Taghiabadi
,
R.
, and
Shahriyari
,
F.
,
2018
, “
Investigation of the Tribological Properties of AlxSi-1.2Fe(Mn) (x = 5–13 wt.%) Alloys
,”
J. Mater. Eng. Perf.
,
27
(
7
), pp.
3323
3334
. 10.1007/s11665-018-3420-9
43.
Uthayakumar
,
M.
,
Aravindan
,
S.
, and
Rajkumar
,
K.
,
2013
, “
Wear Performance of Al-SiC-B4C Hybrid Composites Under Dry Sliding Conditions
,”
Mater. Des.
,
47
, pp.
456
464
. 10.1016/j.matdes.2012.11.059
44.
Nadim
,
A.
,
Taghiabadi
,
R.
, and
Razaghian
,
A.
,
2018
, “
Effect of Mn Modification on the Tribological Properties of in-situ Al-15Mg2Si Composites Containing Fe as an Impurity
,”
ASME J. Tribol.
,
140
(
6
), p.
061610
. 10.1115/1.4040384
You do not currently have access to this content.