Abstract

Concerns raised about the environmental ramifications of electrodeposited hard chromium (EHC) plating are perhaps the paramount challenge posed to the finishing industries to find a suitable alternative. Electroless Ni-B coatings have attracted much attention due to their superior mechanical and tribological properties; those are enhanced further in electroless Ni-B-W coatings. Electroless Ni-B-W can be a suitable alternative for the replacement of EHC in variety of engineering applications. In the present study, the changes in morphological features, deposition rates with respect to time, and deposition mechanisms of electroless Ni-B-W coatings are studied thoroughly. After heat treatment, all deposited coatings are characterized thoroughly for the evaluation of their mechanical and tribological characteristics. This is helpful in the comparison of characteristics with properties of industrial EHC coatings. To analyze the coating-substrate adhesion in the electroless depositions, scratch tests with progressive load and repetitions are carried out. Frictional behavior and failure mechanisms at the scratch tracks of all fabricated coatings are also studied through repetitive scratch tests. Heat treatment of electroless Ni-B-W coatings induced significant improvements in mechanical properties, tribological properties, and adhesion behavior. The present study establishes beyond doubt that owing to a specific set of properties, electroless Ni-B-W coatings show tremendous potential to be recommended as a replacement for chrome coatings.

References

1.
Sudagar
,
J.
,
Lian
,
J.
, and
Sha
,
W.
,
2013
, “
Electroless Nickel, Alloy, Composite, and Nano Coatings–A Critical Review
,”
J. Alloys Compd.
,
571
(
1
), pp.
83
204
.
2.
Mallory
,
G. O.
, and
Hajdu
,
J. B.
,
1990
,
Electroless Plating: Fundamentals and Applications
,
American Electroplaters and Surface Finishers Society
,
Orlando, FL
, pp.
1
539
.
3.
Zhang
,
B.
,
2016
,
Amorphous and Nano Alloys Electroless Depositions: Technology, Composition, Structure and Theory
,
Elsevier
,
Changsha, China
, pp.
1
749
.
4.
Safavi
,
M. S.
, and
Walsh
,
F. C.
,
2021
, “
Electrodeposited Co-P Alloy and Composite Coatings: A Review of Progress Towards Replacement of Conventional Hard Chromium Deposits
,”
Surf. Coat. Technol.
,
422
, p.
127564
.
5.
Fathi
,
M.
,
Safavi
,
M. S.
,
Mahdavi
,
S.
,
Mirzazadeh
,
S.
,
Charkhesht
,
V.
,
Mardanifar
,
A.
, and
Mehdipour
,
M.
,
2021
, “
Co-P Alloy Matrix Composite Deposits Reinforced by Nano-MoS2 Solid Lubricant: An Alternative Tribological Coating to Hard Chromium Coatings
,”
Tribol. Int.
,
159
(
22
), p.
106956
.
6.
Vitry
,
V.
,
Hastir
,
J.
,
Megret
,
A.
,
Yazdani
,
S.
,
Yunacti
,
M.
, and
Bonin
,
L.
,
2022
, “
Recent Advances in Electroless Nickel–Boron Coatings
,”
Surf. Coat. Technol.
,
429
, p.
127937
.
7.
Williamson
,
E. H.
,
Gee
,
M.
,
Robertson
,
D.
,
Watts
,
J. F.
,
Whiting
,
M. J.
, and
Yeomans
,
J. A.
,
2019
, “
Wear Performance and Characterization of Coatings for Nuclear Applications: WC-(W,Cr)2C-Ni and Hard Chromium Plate
,”
Wear
,
430–431
, pp.
169
182
.
8.
Ranjbar
,
K.
, and
Sababi
,
M.
,
2012
, “
Failure Assessment of the Hard Chrome Coated Rotors in the Downhole Drilling Motors
,”
Eng. Fail. Anal.
,
20
, pp.
147
155
.
9.
Huang
,
P.-C.
,
Chou
,
C.-C.
, and
Hsu
,
L.-S.
,
2021
, “
Preparation and Tribological Research of the Electrodeposited Ni-W Alloy Coatings for Piston Ring Application
,”
Surf. Coat. Technol.
,
411
, p.
126980
.
10.
Zhang
,
Q.
,
Wang
,
J.
,
Shen
,
W.
,
Huang
,
F.
, and
Zhao
,
Y.
,
2022
, “
Failure Analysis of Chromium Plating Layer on the Surface of the Piston Rod of the Hydraulic Jack
,”
Coatings
,
12
(
6
), p.
774
.
11.
Zhang
,
Y.
,
Tian
,
Y.
, and
Meng
,
Y.
,
2021
, “
Wear Behavior of Spindles of Cotton Picker in Field Work
,”
ASME J. Tribol.
,
143
(
2
), p.
021703
.
12.
Carneiro
,
E.
,
Castro
,
J. D.
,
Marques
,
S. M.
,
Cavaleiro
,
A.
, and
Carvalho
,
S.
,
2021
, “
REACH Regulation Challenge: Development of Alternative Coatings to Hexavalent Chromium for Minting Applications
,”
Surf. Coat. Technol.
,
418
, p.
127271
.
13.
Georgiou
,
S.
,
Postle
,
M.
, and
Rheinberger
,
C. M.
,
2019
, “Valuation of Health Impacts Under the EU's REACH Chemicals Regulation,”
Encyclopedia of Environmental Health
,
J.
Nriagu
, ed.,
Elsevier
, pp.
314
318
.
14.
Kemmlein
,
S.
,
Herzke
,
D.
, and
Law
,
R. J.
,
2009
, “
Brominated Flame Retardants in the European Chemicals Policy of REACH-Regulation and Determination in Materials
,”
J. Chromatogr. A
,
1216
(
3
), pp.
320
333
.
15.
Vitry
,
V.
, and
Bonin
,
L.
,
2017
, “
Increase of Boron Content in Electroless Nickel-Boron Coating by Modification of Plating Conditions
,”
Surf. Coat. Technol.
,
311
, pp.
164
171
.
16.
Vitry
,
V.
,
Kanta
,
A.-F.
,
Dille
,
J.
, and
Delaunois
,
F.
,
2012
, “
Structural State of Electroless Nickel–Boron Deposits (5 wt.% B): Characterization by XRD and TEM
,”
Surf. Coat. Technol.
,
206
(
16
), pp.
3444
3449
.
17.
Vitry
,
V.
, and
Delaunois
,
F.
,
2015
,
Nanostructured Electroless Nickel-Boron Coatings for Wear Resistance, Anti-Abrasive Nanocoatings
,
Elsevier
,
New York
, pp.
157
199
.
18.
Joshi
,
M. D.
,
Kumar
,
V.
,
Singh
,
I.
, and
Hosmani
,
S. S.
,
2021
, “
Tribological Response of Mechanical Attrition Treated Surface of AISI 316L Steel: The Role of Velocity of Colliding Balls
,”
ASME J. Tribol.
,
143
(
3
), p.
031701
.
19.
Pal
,
S.
,
Verma
,
N.
,
Jayaram
,
V.
,
Biswas
,
S. K.
, and
Riddle
,
Y.
,
2011
, “
Characterization of Phase Transformation Behavior and Microstructural Development of Electroless Ni-B Coating
,”
Mater. Sci. Eng. A
,
528
(
28
), pp.
8269
8276
.
20.
Vitry
,
V.
,
Kanta
,
A. F.
, and
Delaunois
,
F.
,
2010
, “
Initiation and Formation of Electroless Nickel-Boron Coatings on Mild Steel: Effect of Substrate Roughness
,”
Mater. Sci. Eng. B
,
175
(
3
), pp.
266
273
.
21.
Bonin
,
L.
,
Vitry
,
V.
, and
Delaunois
,
F.
,
2020
, “
Inorganic Salts Stabilizers Effect in Electroless Nickel-Boron Plating: Stabilization Mechanism and Microstructure Modification
,”
Surf. Coat. Technol.
,
401
, p.
126276
.
22.
Kanani
,
N.
,
2005
,
Electroplating–Basic Principles, Processes and Practice
,
Elsevier
,
UK
, pp.
1
353
.
23.
Rao
,
Q. L.
,
Bi
,
G.
,
Lu
,
Q. H.
,
Wang
,
H. W.
, and
Fan
,
X. I.
,
2005
, “
Microstructure Evolution of Electroless Ni-B Film During Its Depositing Process
,”
Appl. Surf. Sci.
,
240
(
1
4
), pp.
28
33
.
24.
Mukhopadhyay
,
A.
,
Barman
,
T. K.
, and
Sahoo
,
P.
,
2017
, “
Tribological Behavior of Sodium Borohydride Reduced Electroless Nickel Alloy Coatings at Room and Elevated Temperatures
,”
Surf. Coat. Technol.
,
321
, pp.
464
476
.
25.
Mukhopadhyay
,
A.
,
Barman
,
T. K.
, and
Sahoo
,
P.
,
2018
, “
Tribological Behavior of Electroless Ni-B-W Coating at Room and Elevated Temperatures
,”
J. Eng. Tribol.
,
232
(
11
), pp.
1
17
.
26.
Balaraju
,
J. N.
,
Manikandanath
,
N. T.
, and
William Grips
,
V. K.
,
2012
, “
Phase Transformation Behavior of Nanocrystalline Ni-W-P Alloys Containing Various W and P Contents
,”
Surf. Coat. Technol.
,
206
(
10
), pp.
2682
2689
.
27.
Shu
,
X.
,
Wang
,
Y.
,
Lu
,
X.
,
Liu
,
C.
, and
Gao
,
W.
,
2015
, “
Parameter Optimization for Electroless Ni-W-P Coating
,”
Surf. Coat. Technol.
,
276
, pp.
195
201
.
28.
Pal
,
S.
, and
Jayaram
,
V.
,
2018
, “
Effect of Microstructure on the Hardness and Dry Sliding Behavior of Electroless Ni-B Coating
,”
Materialia
,
4
, pp.
47
64
.
29.
Arias
,
S.
,
Castano
,
J. G.
,
Correa
,
E.
,
Echeverria
,
F.
, and
Gomez
,
M.
,
2019
, “
Effect of Heat Treatment on Tribological Properties of Ni-B Coatings on Low Carbon Steel: Wear Maps and Wear Mechanisms
,”
ASME J. Tribol.
,
141
(
9
), p.
091601
.
30.
Correa
,
E.
,
Mejia
,
J. F.
,
Castano
,
J. G.
,
Echeverria
,
F.
, and
Gomez
,
M. A.
,
2017
, “
Tribological Characterization of Electroless Ni–B Coatings Formed on Commercial Purity Magnesium
,”
ASME J. Tribol.
,
139
(
5
), p.
051302
.
31.
Nemane
,
V.
, and
Chatterjee
,
S.
,
2022
, “
Nanomechanical, Tribological, and Scratch Properties of Electroless Ni-B-W Alloy and Ni-B-W-SiC Composite Coatings
,”
ASME J. Tribol.
,
144
(
5
), p.
051402
.
32.
Riddle
,
Y. W.
, and
Bailerare
,
T. O.
,
2005
, “
Friction and Wear Reduction Via an Ni-B Electroless Bath Coating for Metal Alloys
,”
JOM
,
57
(
4
), pp.
40
45
.
33.
Kumar
,
M.
, and
Mitra
,
R.
,
2017
, “
Effect of Substrate Temperature and Annealing on Structure, Stress and Properties of Reactively Co-Sputtered Ni-TiN Nanocomposite Thin Films
,”
Thin Solid Films
,
624
, pp.
70
82
.
34.
Vitry
,
V.
,
Kanta
,
A.-F.
, and
Delaunois
,
F.
,
2012
, “
“Application of Nitriding to Electroless Nickel–Boron Coatings: Chemical and Structural Effects; Mechanical Characterization” Corrosion Resistance
,”
Mater. Des.
,
39
, pp.
269
278
.
35.
Yazdani
,
S.
,
Tima
,
R.
, and
Mahboubi
,
F.
,
2018
, “
Investigation of Wear Behavior of As-Plated and Plasma-Nitrided Ni-B-CNT Electroless Having Different CNTs Concentration
,”
Appl. Surf. Sci.
,
457
, pp.
942
955
.
36.
Vernhes
,
L.
,
Azzi
,
M.
, and
Klemberg-Sapieha
,
J. E.
,
2013
, “
Alternatives for Hard Chromium Plating: Nanostructured Coatings for Severe-Service Valves
,”
Mater. Chem. Phys.
,
140
(
2–3
), pp.
522
528
.
37.
Simao
,
J.
, and
Aspinwall
,
D. K.
,
1999
, “
Hard Chromium Plating of EDT Mill Work Rolls
,”
J. Mater. Process. Technol.
,
92–93
, pp.
281
287
.
38.
Imaz
,
N.
,
Ostra
,
M.
,
Vidal
,
M.
,
Díez
,
J. A.
,
Sarret
,
M.
, and
García-Lecina
,
E.
,
2014
, “
Corrosion Behaviour of Chromium Coatings Obtained by Direct and Reverse Pulse Plating Electrodeposition in NaCl Aqueous Solution
,”
Corros. Sci.
,
78
, pp.
251
259
.
39.
Almotairi
,
A.
,
Warkentin
,
A.
, and
Farhat
,
Z.
,
2016
, “
Mechanical Damage of Hard Chromium Coatings on 416 Stainless Steel
,”
Eng. Fail. Anal.
,
66
, pp.
130
140
.
40.
Gawne
,
D. T.
, and
Ma
,
U.
,
1988
, “
Engineering Properties of Chromium Plating and Electroless and Electroplated Nickel
,”
Surf. Eng.
,
4
(
3
), pp.
239
249
.
41.
Podgornik
,
B.
,
Massler
,
O.
,
Kafexhiu
,
F.
, and
Sedlacek
,
M.
,
2018
, “
Crack Density and Tribological Performance of Hard-Chrome Coatings
,”
Tribol. Int.
,
121
, pp.
333
340
.
42.
Krishnaveni
,
K.
,
Sankara Narayanan
,
T. S. N.
, and
Seshadri
,
S. K.
,
2005
, “
Electroless Ni-B Coatings: Preparation and Evaluation of Hardness and Wear Resistance
,”
Surf. Coat. Technol.
,
190
(
1
), pp.
115
121
.
43.
Correa
,
E.
,
Zuleta
,
A. A.
,
Sepulveda
,
M.
,
Guerra
,
L.
, and
Castano
,
J. G.
,
2012
, “
Nickel-Boron Plating on Magnesium and AZ91D Alloy by a Chromium-Free Electroless Process
,”
Surf. Coat. Technol.
,
206
(
13
), pp.
3088
3093
.
44.
Delaunois
,
F.
,
Vitry
,
V.
, and
Bonin
,
L.
,
2019
,
Electroless Nickel Plating: Fundamentals to Applications
, 1st ed.,
CRC Press
,
Boca Raton, FL
, pp.
1
446
.
45.
Barati
,
Q.
, and
Hadavi
,
S. M. M.
,
2020
, “
Electroless Ni-B and Composite Coatings: A Critical Review on Formation Mechanism, Properties, Applications and Future Trends
,”
Surf. Interfaces
,
21
, p.
100702
.
46.
Li
,
Z.
,
Farhat
,
Z.
,
Jarjoura
,
G.
,
Fayyad
,
E.
,
Abdullah
,
A.
, and
Hassan
,
M.
,
2019
, “
Synthesis and Characterization of Scratch Resistant Ni-P-Ti-Based Composite Coating
,”
Tribolo. Trans.
,
62
(
5
), pp.
880
896
.
47.
Kallel
,
M.
,
Masseoud
,
M.
,
Vesco
,
S.
,
Barletta
,
M.
, and
Elleuch
,
K.
,
2020
, “
The Effects of Titania Sol Concentration on Single- and Multiple-Scratch Damage in Electroplated Ni–B/Titania Sol Composite Coating
,”
Ceram. Int.
,
46
(
3
), pp.
3767
3776
.
48.
Wei
,
Q.
,
Lu
,
J.
,
Yang
,
Q.
, and
Li
,
X.
,
2018
, “
Multi-pass Micro-Scratching and Tribological Behaviors of an Austenitic Steel in Media
,”
Tribol. Int.
,
117
, pp.
112
118
.
49.
Vitry
,
V.
,
Delaunois
,
F.
, and
Dumortier
,
C.
,
2008
, “
Mechanical Properties and Scratch Test Resistance of Nickel–Boron Coated Aluminium Alloy After Heat Treatments
,”
Surf. Coat. Technol.
,
202
(
14
), pp.
3316
3324
.
50.
Burnett
,
P. J.
, and
Rickerby
,
D. S.
,
1988
, “
The Scratch Adhesion Test: An Elastic-Plastic Indentation Analysis
,”
Thin Solid Films
,
157
(
2
), pp.
233
254
.
51.
Akhter
,
R.
,
Zhou
,
Z.
,
Xie
,
Z.
, and
Munroe
,
P.
,
2021
, “
Enhancing the Adhesion Strength and Wear Resistance of Nanostructured NiCrN Coatings
,”
Appl. Surf. Sci.
,
541
(
11
), p.
148533
.
52.
Falsafein
,
M.
,
Ashrafizadeh
,
F.
, and
Kheirandish
,
A.
,
2018
, “
Influence of Thickness on Adhesion of Nanostructured Multilayer CrN/CrAlN Coatings to Stainless Steel Substrate
,”
Surf. Interfaces
,
13
, pp.
178
185
.
53.
Qasim
,
T.
,
Ford
,
C.
,
Bongue-Boma
,
M.
,
Bush
,
M. B.
, and
Hu
,
X.-Z.
,
2006
, “
Effect of Coating Thickness on Crack Initiation and Propagation in Non-Planar Bi-Layers
,”
Mater. Sci. Eng. A
,
419
(
1–2
), pp.
189
195
.
54.
Sheeja
,
D.
,
Tay
,
B. K.
,
Leong
,
K. W.
, and
Lee
,
C. H.
,
2002
, “
Effect of Film Thickness on the Stress and Adhesion of Diamond-Like Carbon Coatings
,”
Diam. Relat. Mater.
,
11
(
9
), pp.
1643
1647
.
55.
Qina
,
F.
,
Chou
,
Y. K.
,
Nolen
,
D.
, and
Thompson
,
R. G.
,
2009
, “
Coating Thickness Effects on Diamond Coated Cutting Tools
,”
Surf. Coat. Technol.
,
204
(
6–7
), pp.
1056
1060
.
56.
Lu
,
P.
,
Gomez
,
H.
,
Xiao
,
X.
,
Lukitsch
,
M.
,
Durham
,
D.
,
Sachdeve
,
A.
,
Kumar
,
A.
, and
Chou
,
K.
,
2013
, “
Coating Thickness and Interlayer Effects on CVD-Diamond Film Adhesion to Cobalt-Cemented Tungsten Carbides
,”
Surf. Coat. Technol.
,
215
, pp.
272
279
.
57.
Singh
,
R.
,
Schruefer
,
S.
,
Wilson
,
S.
,
Gibmeier
,
J.
, and
Vassen
,
R.
,
2018
, “
Influence of Coating Thickness on Residual Stress and Adhesion-Strength of Cold-Sprayed Inconel 718 Coatings
,”
Surf. Coat. Technol.
,
350
, pp.
64
73
.
58.
Seidl
,
W. M.
,
Bartosik
,
M.
,
Kolozsvari
,
S.
,
Bolvardi
,
H.
, and
Mayrhofer
,
P. H.
,
2018
, “
Influence of Coating Thickness and Substrate on Stresses and Mechanical Properties of (Ti, Al,Ta)N/(Al,Cr)N Multilayers
,”
Surf. Coat. Technol.
,
347
, pp.
92
98
.
59.
Fochesatto
,
N. S.
,
Buezas
,
F. S.
,
Rosales
,
M. B.
, and
Tuckart
,
W. R.
,
2017
, “
Effect of Crack Patterns on the Stress Distribution of Hard Chromium Coatings Under Sliding Contact: Stochastic Modeling Approach
,”
ASME J. Tribol.
,
139
(
6
), p.
061401
.
60.
Kosta
,
I.
,
Imaz
,
N.
,
Cinca
,
N.
,
Garcia-Lecina
,
E.
,
Sarret
,
M.
, and
Muller
,
C.
,
2012
, “
Pulse Plated CoP Alloy as Substitute for Hard Chromium Electrodeposits
,”
Trans. IMF
,
90
(
5
), pp.
252
258
.
61.
Misra
,
D.
,
Nemane
,
V.
,
Mukhopadhyay
,
S.
, and
Chatterjee
,
S.
,
2020
, “
Effect of hBN and SiC Addition on Laser Assisted Processing of Ceramic Matrix Composite Coatings
,”
Ceram. Int.
,
46
(
7
), pp.
9758
9764
.
62.
Misra
,
D.
,
Joardar
,
H.
,
Khaira
,
A.
,
Mukhopadhyay
,
S.
, and
Chatterjee
,
S.
,
2021
, “
A New Approach to Study of TiB2-TiN-SiC Based Tribological Coatings With Solid Lubrication
,”
Sadhana
,
46
(
4
), p.
198
.
63.
Sahoo
,
P.
, and
Das
,
S. K.
,
2011
, “
Tribology of Electroless Nickel Coatings—A Review
,”
Mater. Des.
,
32
(
4
), pp.
1760
1775
.
64.
Eraslan
,
S.
, and
Urgen
,
M.
,
2015
, “
Oxidation Behavior of Electroless Ni-P, Ni-B and Ni-W-B Coatings Deposited on Steel Substrates
,”
Surf. Coat. Technol.
,
265
, pp.
46
52
.
You do not currently have access to this content.